共查询到16条相似文献,搜索用时 70 毫秒
1.
基于APSO的模糊聚类算法 总被引:1,自引:0,他引:1
利用改进的自适应粒子群优化算法(APSO)较强全局寻优、快速收敛的特点和模糊C-均值算法(FCM)对初始值敏感、容易陷入局部最优的缺点.提出一种基于自适应粒子群优化算法的模糊聚类算法(APFM).新算法有效的克服了FCM算法的缺点,同时增强了APSO算法全局搜索和跳出局部最优的能力.实验表明:新算法与单一的FCM和APSO算法相比聚类更准确,效率更高. 相似文献
2.
基于粒子群优化算法的模糊C-均值聚类 总被引:15,自引:0,他引:15
利用粒子群优化(PSO)算法全局寻优、 快速收敛的特点, 结合模糊C 均值(FCM)算法提出一种新的模糊聚类算法. 新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程, 使算法具有很强的全局搜索能力, 很大程度上避免了FCM算法易陷入局部极小的缺陷; 同时也降低了FCM算法对初始值的敏感度. 实验结果表明, 与FCM相比本文算法聚类更为准确, 效率更高. 相似文献
3.
文章阐述了模糊C-均值聚类算法(FCM)原理及存在的缺点,通过将粒子群优化算法思想应用到模糊聚类算法中,对模糊聚类算法进行了优化设计.实验证明,改进的算法具有较好的全局最优解,克服了传统模糊C聚类算法的不足,聚类效果优于单一使用FCM算法. 相似文献
4.
基于模糊聚类的粒子群优化算法 总被引:3,自引:0,他引:3
粒子群优化算法(PSO)的基础上,提出了基于模糊C-均值聚类(FCM)算法的粒子群优化算法.该算法在每次迭代过程中首先通过FCM算法把粒子群体分成若干个子群体,然后粒子群中的粒子根据其个体极值和子群中的最优粒子更新自己的速度和位置值.通过典型复杂函数测试表明,基于模糊C-均值(FCM)的粒子群优化算法的优化性能和效率远远超过基本粒子群优化算法. 相似文献
5.
基于PSO的模糊C均值聚类算法 总被引:4,自引:0,他引:4
在分析模糊C均值聚类算法存在不足的基础上,提出了一种新的聚类算法:基于粒子群的模糊C均值聚类算法.该算法利用粒子群强大的全局寻优能力,不仅克服了传统的模糊C均值聚类算法对初始值敏感、噪声数据敏感、易陷人局部最优的问题,而且有较快的收敛速度.试验证明,这种算法是一种很有潜力的模糊聚类算法. 相似文献
6.
在模糊c均值算法基础上,提出一种将粒子群算法与c均值算法相结合产生基于自适应粒子群优化的模糊聚类算法(APFC).用KDD cup99数据集进行评估模糊c均值算法和APFC算法检测性能.试验结果表明, APFC均值算法能够避免模糊c均值算法固有的缺点,检测率提高和误报率下降,并且有较高的检测性能. 相似文献
7.
8.
基于自适应差异演化的模糊聚类算法 总被引:2,自引:0,他引:2
在聚类分析中,模糊C-均值聚类(FCM)是一种广泛应用的算法,但由于它是基于梯度下降的,本质上是一种局部搜索算法,容易陷入局部极小值,且对初始值很敏感.本文提出一种基于自适应差异演化的模糊聚类算法(FCBADE),该算法利用差异演化良好的全局搜索能力,在全局范围内寻找最优解的近似解,然后由FCM算法在该近似解的周围进行局部搜索,最终得到全局最优解.同时为减少手工设置控制参数对DE算法的影响,采用自适应方式调整DE算法的控制参数.实验结果表明,该算法不仅有效克服了FCM算法易陷入局部极小值的缺点,而且明显地避免了对初始化选值敏感性的问题,也有较快的收敛速度. 相似文献
9.
基于蚁群聚类算法的模糊神经网络 总被引:1,自引:0,他引:1
提出了一种基于蚁群聚类的模糊神经网络算法,神经网络采用RBF网络结点结构,聚类采用二级结构蚁群聚类算法作为一级聚类而模糊C-均值聚类(FCM)用于二级聚类。将上述聚类方法用于模糊神经网络构建中,仿真结果表明具有并行实时性、聚类能力强的特点。 相似文献
10.
医学超声图像由于存在斑点噪声等模糊和不确定性的特点使得分割一直是一个难题。模糊C-均值聚类算法是一种结合无监督聚类和模糊集合概念的技术,广泛应用于图像分割,但存在着受初始聚类中心和目标函数高度非线性影响,极易收敛到局部极小的缺点。将集群智能的粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验结果表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 相似文献
11.
针对图像分割特征具有交叉重叠现象、其类属的划分存在不确定性的分割问题,模糊聚类分割算法具有较强的优势,但其速度慢且容易陷入局部最优以及对初始值的设置敏感等问题.根据粒子群优化算法具有全局寻优能力,同时还具有较强的局部寻优能力,能更快收敛于最优解的特点,提出了一种基于粒子群的模糊聚类分割算法.实验证明,该算法相比传统的模糊聚类分割算法,具有更快的收敛速度和更高的分割精度. 相似文献
12.
把免疫系统的免疫信息处理机制引入到粒子群优化(PSO)算法中,并与模糊C均值(FCM)算法相结合提出一种新的模糊聚类算法.新算法用免疫粒子群优化算法代替FCM算法的基于梯度下降的迭代过程,使算法具有较强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷,同时也降低了FCM算法对初始值的敏感度.采用对当基思想初始化种群,获得更优的初始候选解,提高算法聚类过程中的收敛速度.以UCI机器学习数据库中的两组数据集为研究对象,实验结果表明,该算法优于基于PSO的模糊C均值聚类算法和FCM算法. 相似文献
13.
为解决传统模糊聚类迭代算法对初始化敏感,易陷入局部最优及处理高维数据时精度下降的问题,对基于马氏距离的模糊聚类算法(fuzzy c-means algorithm based on Mahalanobis distance,M-FCM)进行优化。将马氏距离代替欧氏距离,通过构造类内紧致度、类间分离度与类间清晰度结合的适应度函数,利用粒子群优化算法(particle swarm optimization,PSO)对马氏距离模糊聚类进行研究,提出了基于粒子群优化的马氏距离模糊聚类算法(Mahalanobis distance fuzzy clustering algorithm based on particle swarm optimization,DPSOM-FCM),并将此新算法与FCM(fuzzy c-means algorithm),M-FCM,PSO-FCM,IFPSOFCM(importance for fuzzy clustering algorithm based on particle swarm optimization)算法,在UCI(university of californiairvine)数据库的6个标准数据集上进行实验对比分析。结果表明,DPSOM-FCM算法具有算法收敛性和聚类有效性,并且聚类精确度优于其他算法,对高维数据的聚类识别能力强,即该算法具有全局优化作用。 相似文献
14.
把QPSO算法与模糊c-均值(FCM)算法相结合提出一种混合模糊聚类算法(QPSO—FCM),将FCM算法中基于梯度下降的迭代过程用新算法进行替代,能够在一定程度上克服FCM算法易陷入局部极小的缺陷,降低FCM算法的初值敏感度.通过典型的Wine的数据实验结果证明,改进后的新算法具有良好的收敛性,聚类效果也有一定的改善. 相似文献
15.
基于粒子群聚类算法的大坝安全监控模型 总被引:1,自引:1,他引:1
将粒子群算法与模糊聚类算法相结合,建立了基于粒子群聚类算法的大坝安全监控模型.该算法将分类矩阵作为粒子的编码形式,依据粒子的个体极值和全局极值,充分利用正反馈计算信息,自适应性地确定模糊分类矩阵和聚类中心.工程算例表明:粒子群聚类算法进一步提高了聚类算法的区间预报能力;对于高维优化问题,粒子的搜索过程比较复杂,该算法的收敛速度较慢. 相似文献
16.
基于粒子群优化和SOM网络的聚类算法研究 总被引:2,自引:0,他引:2
利用改进的粒子群优化算法(PSO)的优化性能,结合SOM网络模型,提出了一种基于粒子群优化算法和SOM网络的聚类算法(PSO/SOM),使用PSO对SOM网络进行训练来代替SOM的启发式训练方法.将PSO/SOM算法用于对Wine和Iris等数据集进行模式聚类识别,可以得到较优的聚类识别效果.相比标准SOM算法能有效提高网络映射的准确程度,降低网络的量化误差和拓扑误差,同时也降低了错聚率,实验结果验证了本算法的有效性. 相似文献