共查询到15条相似文献,搜索用时 93 毫秒
1.
距离加权矢量量化文本无关的说话人识别 总被引:10,自引:0,他引:10
本文在研究说话人识别的矢量量化方法时,分析了用矢量量化建立说话人识别模型的可行性。针对量化码本描述的不完全性,提出了一种经距离加权的矢量量化方法,能更好地刻划出说话人语音特征空间的精细结构,从而提高正识率。本文还对特征参数LPCCEP的选取进行了理论分析和实验研究,提出了平均互—自差异比的概念,给出了一种对特征矢量的每一维分量识别能力进行定量化估算的公式。实验结果表明,距离加权矢量量化是一种具有很高正识率的与文本无关的说话人识别方法。 相似文献
2.
该文针对LBG算法可能有空胞腔产生及有些码字利用率低的问题,提出了一种改进的矢量量化算法,并将其应用到与文本无关的说话人识别研究,得到了一种新的说话人识别方法.实验表明,这种方法对说话人的识别性能好于基于LBG算法的说话人识别方法. 相似文献
3.
提出一种基于遗传神经网络的说话人识别系统.将遗传算法和矢量量化技术结合建立说话人模型,然后利用遗传神经网络进行识别.实验结果表明,这种方法既降低了用户的语音数据采集量,有利于话者模板的建立,又提高了系统的识别性能及鲁棒性,较传统方法有明显的优越性. 相似文献
4.
为了克服传统VQ与GMM说话人识别的缺点,提出了一种新的FVQMM说话人识别方法。该方法综合了VQ、GMM和模糊集理论的优点。通过用模糊VQ误差尺度取代传统GMM的输出概率函数,减少了建模时对训练数据量的要求,提高了识别速度。实验结果表明该方法是有效的。 相似文献
5.
研究的说话人识别系统,采用能够反映人对语音的感知特性的线性预测(LPC)倒谱参数作为特征参数,同时对特征参数各维分量的识别能力进行定量分析,采用一种新的加权方法进行矢量量化,在此方法下系统取得识别率很高的效果,而且计算量和存储量都比较低. 相似文献
6.
说话人识别技术是通过判断待识别人语音与预先提取的说话人语音特征是否匹配来鉴别说话人身份的一种生物认证技术,环境噪声是说话人识别技术走向实用化的一个主要障碍.针对噪声环境中说话人识别性能较差的不足,结合小波变换的优点,提出了将小波变换技术与传统的特征参数提取方式相结合的方法.该方法首先对语音信号进行小波分解,在此基础上再对小波系数进行阈值处理,仅保留阈值以上的数据,而后提取相关性不大的传统特征参数进行组合,分别作为说话人识别系统的输入矢量.仿真结果表明:在噪声环境中,说话人识别系统能较好识别出说话人,经过小波变换后再提取特征参数的方法可以得到更高的识别率,大大提高说话人识别系统的识别性能. 相似文献
7.
8.
9.
张歆奕 《五邑大学学报(自然科学版)》2005,19(1):10-16
介绍了指数展开分类器,引出了NAPS核函数及核映射的概念.详细讨论了如何利用基于NAPS核函数的支持矢量机进行说话人识别的算法.理论和实验表明,算法具有模型参数小、识别速度快和识别率较高的优点. 相似文献
10.
为了解决浅层特征不能有效刻画说话人特征,导致说话人检索率不高的问题,提出了一种基于深层说话人矢量的说话人检索方法.使用受限波尔兹曼机逐层构建一个多层的深层特征提取器用以提取说话人深层特征.为说话人构建基于深层特征的深层说话人矢量.通过计算要检索的说话人的深层说话人矢量和检索库中的说话人深层特征之间的最小距离,对目标说话人进行检索.实验结果表明:在深层特征下,使用深层说话人矢量可以检索到绝大部分的目标说话人;随着深度层数的增加,检索率先增后减,检索率最高对应的深度层数是7;随着深度层数的增加,检索时间非线性增加. 相似文献
11.
针对当前基于DSP等硬核处理器的嵌入式说话人识别系统存在训练和辨认时间较长的问题,提出一种基于FPGA平台与矢量量化原理的说话人识别系统实现方案.在采用遗传算法进行矢量量化的说话人识别的系统中,该方案实现的硬件并行运算结构可大大减少求适应度的耗时.经测试,该实现方案在保证识别率前提下,可有效提高训练与识别速度. 相似文献
12.
支持向量机的说话人识别采用对音子的置信度进行综合的原理来完成对说话人身份的确认.以音子的置信度矢量为基础,分别采用支持向量机方法和平均值方法对音子的置信度进行综合,通过等错误率方面的研究发现,采用支持向量机方法大大低于平均值方法所获得的等错误率,等错误率大致可以从28%降至23%,而系统的复杂度仅略微地提高. 相似文献
13.
提出了一种模糊聚类分析算法SFCM,并将其用于语音特征的矢量量化,最终形成码本尺寸为256的码本。用SFCM算法得到的码本分布合理,没有空类,采用此码本的语音识别实验表明了这种量化方法对语音识别的有效性。 相似文献
14.
实现了一个基于双分界面的支持向量机的文本无关说话人识别系统,该系统在建立模型的过程中使用高斯混合模型进行特征提取,有效地减少了数据集的规模。与传统的支持向量机方法相比,该方法不仅达到了更高的识别率,对环境具有良好的鲁棒性,并且降低了算法的时间复杂度。由于该方法对大规模数据集的处理能力,使其比传统的方法更适合应用于实际。在相关实验中,也证实了该方法的有效性。 相似文献
15.
在研究可再生希尔伯特空间框架的基础之上,构建出一个新的序列核来对语音序列间的相似性进行度量.特征提取部分针对传统语音短时分析技术容易出现丢失信息的现状,提出了一种基于临界带宽的小波包变换算法.用美国国家标准与技术研究所(NIST)2004年评测数据集进行实验,结果表明该方法可以大幅度提高识别率. 相似文献