首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromatin profiling using targeted DNA adenine methyltransferase   总被引:17,自引:0,他引:17  
Chromatin is the highly complex structure consisting of DNA and hundreds of associated proteins. Most chromatin proteins exert their regulatory and structural functions by binding to specific chromosomal loci. Knowledge of the identity of these in vivo target loci is essential for the understanding of the functions and mechanisms of action of chromatin proteins. We report here large-scale mapping of in vivo binding sites of chromatin proteins, using a novel approach based on a combination of targeted DNA methylation and microarray technology. We show that three distinct chromatin proteins in Drosophila melanogaster cells each associate with specific sets of genes. HP1 binds predominantly to pericentric genes and transposable elements. GAGA factor associates with euchromatic genes that are enriched in (GA)n motifs. A Drosophila homolog of Saccharomyces cerevisiae Sir2p is associated with several active genes and is excluded from heterochromatin. High-resolution, genome-wide maps of target loci of chromatin proteins ('chromatin profiles') provide new insights into chromatin structure and gene regulation.  相似文献   

2.
3.
We constructed a tiling resolution array consisting of 32,433 overlapping BAC clones covering the entire human genome. This increases our ability to identify genetic alterations and their boundaries throughout the genome in a single comparative genomic hybridization (CGH) experiment. At this tiling resolution, we identified minute DNA alterations not previously reported. These alterations include microamplifications and deletions containing oncogenes, tumor-suppressor genes and new genes that may be associated with multiple tumor types. Our findings show the need to move beyond conventional marker-based genome comparison approaches, that rely on inference of continuity between interval markers. Our submegabase resolution tiling set for array CGH (SMRT array) allows comprehensive assessment of genomic integrity and thereby the identification of new genes associated with disease.  相似文献   

4.
5.
6.
Breakage-fusion-bridge cycles contribute to chromosome instability and generate large DNA palindromes that facilitate gene amplification in human cancers. The prevalence of large DNA palindromes in cancer is not known. Here, by using a new microarray-based approach called genome-wide analysis of palindrome formation, we show that palindromes occur frequently and are widespread in human cancers. Individual tumors seem to have a nonrandom distribution of palindromes in their genomes, and a subset of palindromic loci is associated with gene amplification. This indicates that the location of palindromes in the cancer genome can serve as a structural platform that supports subsequent gene amplification. Genome-wide analysis of palindrome formation is a new approach to identify structural chromosome aberrations associated with cancer.  相似文献   

7.
Mosaic variegated aneuploidy is a rare recessive condition characterized by growth retardation, microcephaly, childhood cancer and constitutional mosaicism for chromosomal gains and losses. In five families with mosaic variegated aneuploidy, including two with embryonal rhabdomyosarcoma, we identified truncating and missense mutations of BUB1B, which encodes BUBR1, a key protein in the mitotic spindle checkpoint. These data are the first to relate germline mutations in a spindle checkpoint gene with a human disorder and strongly support a causal link between aneuploidy and cancer development.  相似文献   

8.
9.
Cloning procedures aided by homology searches of EST databases have accelerated the pace of discovery of new genes, but EST database searching remains an involved and onerous task. More than 1.6 million human EST sequences have been deposited in public databases, making it difficult to identify ESTs that represent new genes. Compounding the problems of scale are difficulties in detection associated with a high sequencing error rate and low sequence similarity between distant homologues. We have developed a new method, coupling BLAST-based searches with a domain identification protocol, that filters candidate homologues. Application of this method in a large-scale analysis of 100 signalling domain families has led to the identification of ESTs representing more than 1,000 novel human signalling genes. The 4,206 publicly available ESTs representing these genes are a valuable resource for rapid cloning of novel human signalling proteins. For example, we were able to identify ESTs of at least 106 new small GTPases, of which 6 are likely to belong to new subfamilies. In some cases, further analyses of genomic DNA led to the discovery of previously unidentified full-length protein sequences. This is exemplified by the in silico cloning (prediction of a gene product sequence using only genomic and EST sequence data) of a new type of GTPase with two catalytic domains.  相似文献   

10.
The major histocompatibility complex (MHC) is a source of unique individual odors that influence individual recognition, mating preferences, nesting behavior and selective block of pregnancy in animals. Such phenomena have been difficult to study in humans, because the human leukocyte antigen (HLA, human MHC) loci are the most polymorphic loci in the human genome, with the potential to generate millions of unique combinations of genotypes. In addition, high variability in background odors, encoded by the rest of the genome and influenced by cultural practices, contribute to a low signal-to-noise ratio that could mask HLA-based olfactory cues. Here we show that women can detect differences of one HLA allele among male odor donors with different MHC genotypes. Notably, the mechanism for a woman's ability to discriminate and choose odors is based on HLA alleles inherited from her father but not her mother. The parents' HLA alleles that she does not inherit show no relationship with odor choice, despite exposure to these HLA-encoded odors throughout her life. Our data indicate that paternally inherited HLA-associated odors influence odor preference and may serve as social cues.  相似文献   

11.
12.
13.
The genetics of asthma and atopy have been difficult to determine because these diseases are genetically heterogeneous and modified by environment. The pedigrees in our study (n=86) originate in eastern central Finland (Kainuu province). According to census records, this region had only 200 households (2,000 inhabitants) in the mid sixteenth to mid seventeenth centuries. The current population of 100,000 represents the expansion of these founders within the past 400 years. Because this population is relatively homogeneous, we hypothesized that the molecular genetic mechanisms underlying asthma might also have reduced heterogeneity and therefore be easier to dissect than in mixed populations. A recent twin family study supported a strong genetic component for asthma in Finland. We carried out a genome-wide scan for susceptibility loci in asthma in the Kainuu subpopulation. We identified two regions of suggestive linkage and studied them further with higher-density mapping. We obtained evidence for linkage in a 20-cM region of chromosome 7p14-p15 for three phenotypes: asthma, a high level of immunoglobulin E (IgE; atopy) and the combination of the phenotypes. The strongest linkage was seen for high serum IgE (non-parametric linkage (NPL) score 3.9, P=0.0001), exceeding the threshold for genome-wide significance based on simulations. We also observed linkage between this locus and asthma or atopy in two independent data sets.  相似文献   

14.
Identifying individuals by sequencing mitochondrial DNA from teeth.   总被引:9,自引:0,他引:9  
Mitochondrial DNA (mtDNA) was extracted from teeth stored from 3 months to 20 years, including teeth from the semi-skeletonized remains of a murder victim which had been buried for 10 months. Tooth donors and/or their maternal relatives provided blood or buccal cells, from which mtDNA was also extracted. Enzymatic amplification and direct sequencing of roughly 650 nucleotides from two highly polymorphic regions of mtDNA yielded identical sequences for each comparison of tooth and fresh DNA. Our results suggest that teeth provide an excellent source for high molecular weight mtDNA that can be valuable for extending the time in which decomposed human remains can be genetically identified.  相似文献   

15.
16.
The development of non-viral gene-transfer technologies that can support stable chromosomal integration and persistent gene expression in vivo is desirable. Here we describe the successful use of transposon technology for the nonhomologous insertion of foreign genes into the genomes of adult mammals using naked DNA. We show that the Sleeping Beauty transposase can efficiently insert transposon DNA into the mouse genome in approximately 5-6% of transfected mouse liver cells. Chromosomal transposition resulted in long-term expression (>5 months) of human blood coagulation factor IX at levels that were therapeutic in a mouse model of haemophilia B. Our results establish DNA-mediated transposition as a new genetic tool for mammals, and provide new strategies to improve existing non-viral and viral vectors for human gene therapy applications.  相似文献   

17.
To preserve genetic integrity, mammalian cells exposed to ionizing radiation activate the ATM kinase, which initiates a complex response-including the S-phase checkpoint pathways-to delay DNA replication. Defects in ATM or its substrates Nbs1 or Chk2 (ref. 3), the Nbs1-interacting Mre11 protein, or the Chk2-regulated Cdc25A-Cdk2 cascade all cause radio-resistant DNA synthesis (RDS). It is unknown, however, whether these proteins operate in a common signaling cascade. Here we show that experimental blockade of either the Nbs1-Mre11 function or the Chk2-triggered events leads to a partial RDS phenotype in human cells. In contrast, concomitant interference with Nbs1-Mre11 and the Chk2-Cdc25A-Cdk2 pathways entirely abolishes inhibition of DNA synthesis induced by ionizing radiation, resulting in complete RDS analogous to that caused by defective ATM. In addition, Cdk2-dependent loading of Cdc45 onto replication origins, a prerequisite for recruitment of DNA polymerase, was prevented upon irradiation of normal or Nbs1/Mre11-defective cells but not cells with defective ATM. We conclude that in response to ionizing radiation, phosphorylations of Nbs1 and Chk2 by ATM trigger two parallel branches of the DNA damage-dependent S-phase checkpoint that cooperate by inhibiting distinct steps of DNA replication.  相似文献   

18.
Eukaryotic chromosomes are packaged in nuclei by many orders of folding. Little is known about how higher-order chromatin packaging might affect gene expression. SATB1 is a cell-type specific nuclear protein that recruits chromatin-remodeling factors and regulates numerous genes during thymocyte differentiation. Here we show that in thymocyte nuclei, SATB1 has a cage-like 'network' distribution circumscribing heterochromatin and selectively tethers specialized DNA sequences onto its network. This was shown by fluorescence in situ hybridization on wild-type and Satb1-null thymocytes using in vivo SATB1-bound sequences as probes. Many gene loci, including that of Myc and a brain-specific gene, are anchored by the SATB1 network at specific genomic sites, and this phenomenon is precisely correlated with proper regulation of distant genes. Histone-modification analyses across a gene-enriched genomic region of 70 kb showed that acetylation of histone H3 at Lys9 and Lys14 peaks at the SATB1-binding site and extends over a region of roughly 10 kb covering genes regulated by SATB1. By contrast, in Satb1-null thymocytes, this site is marked by methylation at H3 Lys9. We propose SATB1 as a new type of gene regulator with a novel nuclear architecture, providing sites for tissue-specific organization of DNA sequences and regulating region-specific histone modification.  相似文献   

19.
Using advanced gene targeting methods, generating mouse models of cancer that accurately reproduce the genetic alterations present in human tumors is now relatively straightforward. The challenge is to determine to what extent such models faithfully mimic human disease with respect to the underlying molecular mechanisms that accompany tumor progression. Here we describe a method for comparing mouse models of cancer with human tumors using gene-expression profiling. We applied this method to the analysis of a model of Kras2-mediated lung cancer and found a good relationship to human lung adenocarcinoma, thereby validating the model. Furthermore, we found that whereas a gene-expression signature of KRAS2 activation was not identifiable when analyzing human tumors with known KRAS2 mutation status alone, integrating mouse and human data uncovered a gene-expression signature of KRAS2 mutation in human lung cancer. We confirmed the importance of this signature by gene-expression analysis of short hairpin RNA-mediated inhibition of oncogenic Kras2. These experiments identified both a pattern of gene expression indicative of KRAS2 mutation and potential effectors of oncogenic KRAS2 activity in human cancer. This approach provides a strategy for using genomic analysis of animal models to probe human disease.  相似文献   

20.
Novel approaches to the structural and functional analysis of mammalian chromosomes would be possible if the gross structure of the chromosomes in living cells could be engineered. Controlled modifications can be engineered by conventional targeting techniques based on homologous recombination. Large but uncontrolled modifications can be made by the integration of cloned human telomeric DNA. We describe here the combined use of gene targeting and telomere-mediated chromosome breakage to generate a defined truncation of a human chromosome. Telomeric DNA was targeted to the 6-16 gene on the short arm of chromosome 1 in a human cell line. Molecular and cytogenetic analyses showed that, of eight targeted clones that were isolated, one clone had the predicted truncation of chromosome 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号