首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
支持向量机(Support VectorMachine,SVM)是近年来受到广泛关注的一种学习机器.将支持向量机引入环境时序预测中,有效地求解了空气中降尘的预测问题.实验结果表明,支持向量机不仅具有较强的理论背景,而且具有更强的预测预报能力.  相似文献   

2.
基于支持向量机的短期负荷预测   总被引:1,自引:0,他引:1  
讨论了现有的支持向量机回归参数选取方法.针对负荷预测建模,采用交叉验证的方法对参数进行选取,得到的最优参数对未来的峰荷进行预测,仿真结果表明了该方法的有效性.  相似文献   

3.
以宝鸡市工业需水量为研究对象,运用改进的支持向量基模型对该地区1993~2003年的工业用水量进行模拟计算,并用宝鸡市2004年和2005年的工业用水量进行模型检验,与GM(1.1)模型所得的结果作比较,分析证明了改进的SVR模型方法能取得更好的结果,为研究区域的水资源综合规划提供了科学依据。  相似文献   

4.
文章将支持向量机理论引入到软件可靠性早期预测领域中来,提出了基于支持向量机的软件可靠性早期预测模型;通过对比仿真实验,证实了该模型同传统模型相比,具有预测精度高、泛化能力强及对样本数量的依赖程度低的特点。  相似文献   

5.
目前国内对大学生考研的定性研究居多,很少运用定量的方法建立分析预测模型.本文在参考其它预测体系的基础上,提出了大学生考研预测指标体系.并用三种支持向量机技术对该问题进行了预测,通过具体实例分析获得了较高的预测准确率,得到了不同核下针对该问题的最优预测模型.  相似文献   

6.
针对矿区开采沉降预测方法问题,在分析了矿区开采沉降因素的基础上,利用统计学习的新方法--支持向量机,结合最小二乘算法,提出了矿区沉降的预测模型,预测结果与神经元网络,多项式拟合结果进行比较,结果表明支持向量机在沉降预测方面准确性高,泛化能力强.  相似文献   

7.
目的 为了减少风电场风速预测的误差,研究基于支持向量机(SVM)模型的短期风速预测.方法 采用SVM回归估计算法建立预测模型.结果 将该方法应用于实测数据进行预测,结果表明预测误差确实得到了降低.结论 和传统回归方法(如ARMA)比较说明所建模型是可行和有效的.  相似文献   

8.
为了预测大型水泵在运行中的性能,采用了统计学习理论中的核心算法--支持向量机.针对某一全调节轴流水泵,建立了水泵扬程计算模型和效率计算模型,并绘制出了不同叶片角度时的性能曲线.结果表明,基于支持向量机建立的水泵性能计算模型具有一定的简洁性,只需要知道少量的训练样本就能建立数学计算模型;它克服了传统的实验方法获取性能曲线费用高,也克服了神经网络方法中"过学习"现象和"欠学习"现象的出现;该模型可以很好地预测大型水泵的综合性能,提高水泵的使用效率.  相似文献   

9.
基于蛙跳算法的改进支持向量机预测方法及应用   总被引:1,自引:0,他引:1  
针对支持向量机在中长期负荷预测中关键参数选择的问题,引入蛙跳算法(SFLA)以优化基于支持向量机的中长期负荷预测算法,解决支持向量机参数选择问题。以对中国能源消费总量预测为例,对本文提出的改进算法进行验证。以1979—1999年的能源消耗量作为样本,对2000—2009年能量消耗量进行检验。研究结果表明:引入蛙跳算法后,与用粒子群(PSO)算法改进的支持向量机以及普通支持向量机方法相比,改进支持向量机预测精度分别提高2.34%和3.21%,算法运行时间分别增加51 s和109 s。  相似文献   

10.
基于支持向量机的飞机备件消耗预测研究   总被引:1,自引:0,他引:1  
针对影响飞机备件消耗的诸多因子难于在模型中体现的问题,采用支持向量机回归模型,应用于备件的消耗预测。该方法将影响备件消耗的主要因子作为支持向量机预测模型的输入因子,对应的备件消耗量作为输出因子,训练模型,然后输入测试样本进行预测。预测结果表明,相比于GM(1,1)模型和神经网络(ANN)模型,该模型具有较高的预测精度和动态适应性,可为相应的备件保障部门提供科学的决策依据。  相似文献   

11.
提出一种更简洁的用于主要成分分析 (PCA)及其非线性分析的公式 .给出一个含有规则化项的原始权空间的约束最大优化问题 ,应用核技巧来解决其对偶问题 .该公式同最小二乘支持向量机 (LS SVM )分类器相似 .遵循常规的SVM方法 ,将输入空间的数据映射到高维特征空间 ,然后使用核技巧 ,利用主对偶约束最大优化来解释线性和非线性PCA分析问题 .其优点在于对偶问题适用于高维输入空间 ,而原始问题在N很大时能被更好地解决 .  相似文献   

12.
基于正交表的支持向量机并行学习算法   总被引:1,自引:0,他引:1  
 对大规模训练样本的支持向量机训练问题进行探索,提出了一种基于正交表的并行学习算法.这种方法通过求解一些相互独立的小的训练问题来求解大的训练问题,采用多处理机可求解大规模的训练问题.  相似文献   

13.
基于蚁群优化支持向量机模型的公路客运量预测   总被引:2,自引:0,他引:2  
针对公路客运量预测难以建立精确预测模型的问题,文章引入基于蚁群优化的支持向量机算法对公路客运量进行预测。由于支持向量机的预测精度很大程度上取决于参数的选取,因此利用蚁群算法来优化其训练参数的选择,以得到优化的支持向量机预测模型,利用其对小样本及非线性数据优越的预测性能进行公路客运量的预测。以北京市的数据作为应用算例,并与BP神经网络及传统SVM的预测结果进行对比分析。实验结果表明,基于蚁群的支持向量机模型的预测精度更高,误差更小,可以更有效地对公路客运量进行预测;也说明利用蚁群算法进行支持向量机参数优选的方法是可行有效的。  相似文献   

14.
Seven factors, including the maximum volume of once flow , occurrence frequency of debris flow , watershed area , main channel length , watershed relative height difference , valley incision density and the length ratio of sediment supplement are chosen as evaluation factors of debris flow hazard degree. Using support vector machine (SVM) theory, we selected 259 basic data of 37 debris flow channels in Yunnan Province as learning samples in this study. We create a debris flow hazard assessment model based on SVM. The model was validated though instance applications and showed encouraging results.  相似文献   

15.
This article presents an anomaly detection system based on principal component analysis (PCA) and support vector machine (SVM). The system first creates a profile defining a normal behavior by frequency-based scheme, and then compares the similarity of a current behavior with the created profile to decide whether the input instance is norreal or anomaly. In order to avoid overfitting and reduce the computational burden, normal behavior principal features are extracted by the PCA method. SVM is used to distinguish normal or anomaly for user behavior after training procedure has been completed by learning. In the experiments for performance evaluation the system achieved a correct detection rate equal to 92.2% and a false detection rate equal to 2.8%.  相似文献   

16.
为解决传统机器学习中模型选择、过学习与局部极小值问题,针对自然海底微地形强烈的非线性、不确定性特点,提出海底微地形的LS-SVM预测模型.采用等式约束代替不等式约束,将二次规划问题转化为求解一次线性方程组,提高了收敛速度.实验结果表明,该方法预测结果误差较小,且实时性较好,可满足建立钴结壳最佳切削深度模型的需要.  相似文献   

17.
用于不平衡数据分类的模糊支持向量机算法   总被引:1,自引:0,他引:1  
作为一种有效的机器学习技术,支持向量机已经被成功地应用于各个领域.然而当数据不平衡时,支持向量机会产生次优的分类模型;另一方面,支持向量机算法对数据集中的噪声点和野点非常敏感.为了克服以上不足,提出了一种新的用于不平衡数据分类的模糊支持向量机算法.该算法在设计样本的模糊隶属度函数时,不仅考虑训练样本到其类中心距离,而且考虑样本周围的紧密度.实验结果表明,所提模糊支持向量机算法可以有效地处理不平衡和噪声问题.  相似文献   

18.
基于Gabor小波和支持向量机的人脸识别   总被引:1,自引:1,他引:1  
提出一种将Gabor小波和支持向量机相结合的人脸识别算法。运用AdaBoost算法在复杂背景图像中快速准确地检测出人脸部分,进而用Gabor小波提取归一化人脸图像的特征。最后采用支持向量机进行人脸的分类识别。在ORL人脸库和CAS-PEAL-R1人脸库中对算法进行了测试,结果表明该算法识别率较高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号