共查询到17条相似文献,搜索用时 62 毫秒
1.
针对原始SegNet网络模型存在的参数数量多、 梯度不稳定及分割精度低等问题, 提出一种通过构建SegNet与带残差的bottleneck块、 深度可分离卷积以及跳跃连接结构相结合的改进模型. 在航空和卫星遥感图像数据集上进行实验的结果表明, 改进后的网络模型在精确率、 召回率及F1值等性能评价指标上均获得更优结果, 表明改进的网络模型在遥感图像建筑物分割任务中有良好的实用价值. 相似文献
2.
针对现有的全卷积网络处理脑肿瘤分割任务时网络参数量大、计算困难的问题,提出了一种结合随机森林(Random Forests,RF)和密集连接网络(DenseNet)的方法.方法分为粗分割和精细分割两部分.粗分割在下采样的脑磁共振图像(MRI)上用增强RF初步分割出肿瘤.精细分割依据粗分割得到原始MRI的感兴趣区域,用改... 相似文献
3.
岩屑的岩性识别是地质工作中的一项重要内容。为解决传统人工鉴别岩性的低效问题和通用机器学习模型在岩屑岩性识别上的不适用性,包括准确率欠佳、网络参数冗杂、网络效率低下,针对岩屑图像的特征设计了一种岩屑图像的语义分割网络Debseg-Net,该网络采用编解码结构,卷积与转置卷积结合实现对岩屑图像特征的提取与像素级分类,采用深度可分离卷积减少参数量从而可进一步加深网络,使用跳级连接避免迭代过程中的信息丢失。同时提出了一种高效的岩屑图像自标记方法。经多次实验,Debseg-Net在10口探井收集的640张共计5类岩屑图像数据集上,识别准确率达到98.43%,平均交并比达到90.01%,领先同类型分割网络2.59%~7.04%,在实现数字化岩屑录井进程中提供了方法。 相似文献
4.
手动分割核磁共振成像(MRI)图像中的脑肿瘤区域费时、费力,容易受个人主观性的影响,能够可靠、高效的半自动或自动分割脑肿瘤,对于医学辅助诊断尤为重要。近年来,基于卷积神经网络的脑肿瘤图像自动分割方法虽然取得了长足进步,但现有方法仍未能有效地融合肿瘤图像大尺度轮廓和小尺度纹理细节等方面特征,忽略了训练时丰富的全局上下文信息。针对这些问题,文中提出了一种多尺度轻量级脑肿瘤图像分割网络MSL-Net。首先,利用改进的分层解耦卷积替换U-Net网络中的基础卷积,在高效探索多尺度多视图空间信息的同时扩大了感受野;然后,在跳跃连接处引入双向加权空洞特征金字塔结构以融合多尺度特征,并使用结合了广义Dice损失函数和Focal损失函数的混合损失函数,以提升肿瘤和非肿瘤区像素数量不平衡情况下的分割精度并加快收敛速度。在BraTS 2019数据集上的实验结果表明:文中所提出的MSL-Net网络在整体肿瘤区、核心肿瘤区和增强肿瘤区的Dice相似系数分别为0.900 3、0.830 6和0.777 0,参数量和计算量(每秒浮点运算次数)分别为3.9×105和3.16×1010;与目前先进的方法相比,文中方法在实现轻量化的同时获得高的分割精度。 相似文献
5.
针对传统的血管分割算法需人工参与且分割效果不佳,神经网络的方法存在设计特征量的数量有限等诸多问题,提出了一种基于三维卷积神经网络的血管分割的算法,可以利用多层卷积神经网络获取三维图像的特征,与传统的二维分割有很大的不同。通过正负样本训练后得到的模型,可以对CT图像分割后的三维子块V_i中心位置的像素点进行分类实现血管的自动分割。使用正负样本各14 976个来进行训练和测试所提出的三维卷积神经网络算法,最终,三维卷积神经算法的准确率能够达到86.11%,Dice相似系数为92.43%,召回率为99.76%。实验结果表明了基于三维卷积神经网络的血管分割算法的有效性,可以获得比二维输入数据更好的实验结果。 相似文献
6.
《中南民族大学学报(自然科学版)》2017,(3):118-124
指出了基于深度学习的图像语义分割中,如何充分利用图像上下文信息以达到更好的分割效果,是当前图像语义分割研究的关键问题.为解决这一问题,提出了一种基于多尺度特征提取的图像语义分割方法,通过构建深层卷积神经网络,并利用不同尺度图像作为网络的输入来提取不同尺度图像的特征,最后经过特征融合得到了分割图.在公开数据集Stanford background dataset 8类数据集上进行训练和验证,实验结果达到了84.33%的准确率.实验表明:通过提取和融合多尺度特征,可以达到更好的图像语义分割效果. 相似文献
7.
左心室核磁共振(MR)图像分割对于评估心脏功能和诊断疾病具有重要意义.传统分割算法对于左心室,尤其是含有左心室流出道的左心室MR图像,存在分割精度不够的问题.设计了一种基于空洞卷积密集连接网络的左心室MR图像分割方法.该方法利用密集连接网络和空洞卷积缓解了深度学习中梯度消失和内存过度消耗的问题,并且通过数据增强和提取感... 相似文献
8.
针对卷积神经网络在执行病理图像分割任务时,特征提取单一导致分割性能较差的问题,提出了一种结合拆分注意力跨通道特征融合的病理图像分割网络。首先以UNet为基本结构,设计了空洞拆分注意力模块来提取并融合病理图像上细节特征,以增强通道间的特征交互能力,提高分割精度。其次,设计了深度残差可分离幻影模块,在解码特征融合阶段有效获取足够丰富的特征图。最后在公开数据集DSB2018、MoNuSeg上实验,其灵敏度分别为90.13%、89.23%,准确率分别为92.89%、92.51%。为进一步验证算法有效性,将来自合作单位的病理图像自制成数据集ColonCancer,其灵敏度和准确率分别为90.15%、89.94%。实验结果表明,该方法相较于UNet、ResUNet、GhostUNet、TransUNet等算法有效提升了病理图像分割性能,并对实现不同组织病理图像的分割任务具有一定参考价值和意义。 相似文献
9.
为了满足光学航拍图像中电力线检测的实时性和高精度,提出了一种轻量级Fast-Unet网络电力线检测方法.它以Unet语义分割网络为基础,添加金字塔池化结构增强特征上下文信息的融合.设计深度可分离残差卷积运算,增加了网络深度且进一步减少了网络参数量.使用多损失函数训练Fast-Unet网络,缓解图像中前景与背景类别分布极... 相似文献
10.
针对传统方法在古代壁画图像分割过程中出现的目标边界模糊、图像分割效率低等问题,提出一种基于PSPNet网络的多分类壁画图像分割模型(PSP-M).模型首先融合轻量级神经网络MobileNetV2,降低硬件条件对于模型训练的限制.其次通过全局金字塔模块,将不同级别的特征图拼接起来,避免了表征不同子区域之间关系的语境信息的丢失.最后利用金字塔场景解析网络嵌入壁画背景特征,减少特征损失的同时提高特征提取效率.实验结果表明,PSP-M模型较传统的图像分割模型在训练精确度上平均提升2%,峰值信噪比(PSNR)较实验对比模型平均提高1~2 dB,结构相似指标(SSIM)指标较实验对比模型平均提高0.1~0.2,实验验证了PSP-M模型在壁画分割方面的可行性. 相似文献
11.
针对目前常见的用于高光谱图像分类的卷积神经网络参数数量多,训练时间长,对样本数量依赖性大的问题,提出一种适用于有限训练样本条件下基于改进压缩激活网络和深度可分离残差的分类网络MDSR&SE-Net.首先使用主成分分析对原始高光谱图像进行通道降维,然后通过三维卷积神经网络连接多特征残差结构,同时嵌入改进的SE模块提取高光谱图像的空间和光谱细节特征,最后将提取到的特征数据输入Softmax分类器激活分类.为了使网络更加轻量,通过在残差结构中使用深度可分离卷积和引入全局平均池化减少参数数量.实验结果显示,使用有限训练样本在三种常见高光谱数据集上总体分类精度均达到99%以上. 相似文献
12.
为了解决经典分割算法对于视网膜血管分割精度不够的缺陷,通过将U-net3+(全尺度连接U形网络)应用于视网膜微血管分割,并加以改进来提高分割精度。首先利用U-net3+中的全尺度跳跃连接,提取更多尺度的视网膜微血管特征。针对细小血管难以捕捉的问题,将网络中的普通卷积换成可变卷积,它可以根据血管的形状、大小改变感受野的大小,提高算法的分割准确度。然后使用SFAM模块来优化U-net3+网络中的特征融合部分,保留更多的有用信息。在视网膜图像数据库上测试本文算法,结果表明,分割的平均准确率为97.63%,比传统的U-net网络和U-net3+网络分别提高了2.35%、0.99%。可见,改进算法有效提高了视网膜血管分割精度。 相似文献
13.
针对VDSR模型卷积核单一和DRRN模型不能全局利用的问题,提出了基于并行残差卷积神经网络的联合卷积图像超分辨重建模型。模型首先利用原始卷积层和扩张卷积层融合,建立联合卷积层,然后利用跳跃链接,将多种抽象层次的特征进行融合,最后完成整个超分辨网络的模型构建。提出的模型具有以下优点:①扩张卷积神经网络与原始卷积神经网络融合,在计算机复杂度不变的情况下,可以获取更多尺度的信息,因此具有更强的表达能力;②跳跃链接方式,将抽象层度较低与较高抽象层次的信息融合,获取更多的信息,使得模型具有更强的学习能力。通过在多个数据集上进行实验,模型在大多数任务中与VDSR、DRRN和SRCNN等先进模型相比,IFC值取得了大于0.1的提升。 相似文献
14.
针对传统语义分割模型参数量大、计算速度慢且效率不高等问题,改进了一种基于DeeplabV3+网络的轻量化语义分割模型——Faster-DeeplabV3+。Faster-DeeplabV3+模型采用轻量级MobilenetV2代替Xception作为主干特征提取网络,大幅减少参数量,提高计算速度;引入深度可分离卷积(deep separable convolution,DSC)与空洞空间金字塔(atrous spatia pyramid pooling,ASPP)中的膨胀卷积设计成新的深度可分离膨胀卷积(depthwise separable dilated convolution,DSD-Conv),即组成深度可分离空洞空间金字塔模块(DP-ASPP),扩大感受野的同时减少原本卷积参数量,提高运算速度;加入改进的双注意力机制模块分别对编码区生成的低级特征图和高级特征图进行处理,增强网络对不同维度特征信息提取的敏感性和准确性;融合使用交叉熵和Dice Loss两种损失函数,为模型提供更全面、更多样的优化。改进模型在PASCAL VOC 2012数据集上进行测试,实验结果表明平均交并比由76.57%提升至79.07%,分割准确度由91.2%提升至94.3%。改进模型的网络参数量(params)减少了3.86*106,浮点计算量(GFLOPs)减少了117.98G 。因此,Faster-DeeplabV3+算法在大幅降低参数量、提高运算速度的同时保持较高语义分割效果 相似文献
15.
为了解决前囊的透光性、器械遮挡和较大的场景差异造成的分割困难,实现撕囊操作的定量评估、缩短医生的学习曲线、提供更规范的治疗,通过边缘增强的方法使得结合了自注意力的变感受野网络关注边缘特征,更加准确地分割出撕囊形成的前囊孔洞并对其进行定量评估。首先利用变感受野的空洞卷积网络获取多尺度的语义依赖,接着通过自注意力机制建立边缘和目标内部的依赖关系,最后利用分割结果计算出用于手术评估的圆度、居中度和半径指标。自建了白内障撕囊数据集,并利用球面化算法对其进行了增广和误操作模拟,提出的分割算法在该数据集上进行了测试,实验结果表明所提出的算法明显优于传统分割算法,精确度、交并比分别达到了96.51%、93.25%。可见,该算法能够实现更精准的前囊孔洞分割和术后评估。 相似文献
16.
针对传统卷积神经网络随着深度加深而导致网络退化以及计算量大等问题,提出一种改进残差神经网络的遥感图像场景分类方法。该方法以残差网络ResNet50作为主框架,在残差结构中引入深度可分离卷积和分组卷积,减少了网络的参数量和计算量,加快模型收敛的同时也提升了分类精度。此外在网络中嵌入多尺度SE block模块对通道特征进行重校准,提取出更加重要的特征信息,进一步提升了网络的分类性能。在AID和UCMerced_Land Use两个公开数据集上的分类精度分别为91.92%和93.52%,相比常规残差网络分类精度分别提高了3.38%和10.24%,证明所提方法在遥感图像场景分类任务中的可行性和有效性。 相似文献
17.
针对UPSNet全景分割算法在目标分割过程中存在对无定形区目标分割精度不高的现象,提出一种无定形区特征增强的UPSNet全景分割算法APS。该算法引入空洞卷积,采用自下而上的方式构建特征融合结构,使无定形区特征得以增强,解决无定形目标特征不显著问题,提高语义分割效果,进一步提高全景分割精度。经仿真测试,该算法对道路、草地等无定形目标分割效果均有提高,在COCO数据集上的检测结果与UPSNet相比,SQ值提高4.75%,适合应用于无人车和移动机器人等场景。 相似文献