首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
利用本课题组提出的钛白废酸无焙烧加压浸出钒渣提钒的新技术,以P204为萃取剂从废酸浸出钒渣的浸出液中进行了提钒研究.实验结果表明:采用亚硫酸钠为浸出液预处理还原剂,将浸出液中三价铁还原成二价铁,从而防止三价铁的共萃;常温条件下,当浸出液初始p H=2.5、水相与有机相体积比为1∶3,震荡时间为4 min时,采用有机相组成为20%P204及10%TBP协同萃取体系,钒的萃取率可达98.61%以上,钒铁的分离系数可达135.3.  相似文献   

2.
以p204为萃取剂,260号磺化煤油为稀释剂,从铜转炉烟灰酸浸净化液中萃取分离锌.考察萃取振荡时间、p204的体积分数、相比率(O/A)以及料液初始pH值对锌萃取率的影响.通过正交实验和单因素分析确定p204从铜转炉烟灰酸浸净化液中萃取分离锌的主要影响因素和最佳工艺条件.研究表明:室温条件下,当萃取平衡时间为6 min,p204的体积分数为30%,相比率(O/A)为2∶1,料液初始pH值为3.0时,锌的一级萃取率达到57.32%.经4级错流萃取可以将料液中锌的质量浓度降低到0.027 g/L,锌萃取率达到97.26%.负载有机相经2 mol/L的H2SO4反萃,锌可完全反萃.  相似文献   

3.
研究了三正辛胺从石煤酸浸液中萃取钒的工艺过程 ,从萃取和反萃的 p H值、相比、有机相组成、澄清时间等方面进行了详细试验。研究表明 :用三正辛胺萃取钒时 ,其萃取率可达98%以上 ;而且易反萃 ,用 0 .5 M Na2 CO3反萃时 ,反萃率为 99.9%。经萃取后 ,浸出液中的钒可由每升几克富集到每升数十克以上 ,有利于后续的提钒工艺。  相似文献   

4.
针对现行的湿法炼锌渣中提取锗的研究现状,采用新型萃取剂HBL101从锌置换渣的高酸浸出液中直接萃取锗,考察了料液酸度、萃取剂体积分数、萃取温度、萃取时间和相比对萃取的影响以及氢氧化钠质量浓度、反萃温度、反萃时间和反萃相比对反萃的影响,并对萃取剂转型条件进行了研究.实验表明:有机相组成为30% HBL101+70%磺化煤油(体积分数)作为萃取剂,料液酸度为113.2 g·L-1 H2 SO4,其最佳萃取条件为萃取温度25℃,萃取时间20 min,相比O/A=1:4.经过五级逆流萃取,锗萃取率达到98.57%.负载有机相用150 g·L-1 NaOH溶液可选择性反萃锗得到高纯度锗酸钠溶液,其最佳反萃条件为反萃温度25℃,反萃时间25 min,相比O/A=4:1.经过五级逆流反萃,反萃率可达到98.1%.反萃锗后负载有机相再用200 g·L-1硫酸溶液反萃共萃的铜并转型,控制反萃温度25℃,反萃时间20 min,O/A=2:1.经过五级逆流反萃,铜反萃率可达到99.5%并完成转型,萃取剂返回使用.  相似文献   

5.
含铜细菌浸出液萃取   总被引:1,自引:1,他引:0  
采用萃取剂LIX984N研究了3种含铜细菌浸出液(KLTK,HTS和LW)的萃取效果.萃取剂LIX984N萃取铜的最佳条件:pH为2.5,有机相与水相的体积比为3∶2,萃取剂的质量分数为20%,萃取原液Cu2+的质量浓度为3 g.L-1,萃取时间为11 min.实验表明经过一级萃取后,萃取率在99%以上,一级反萃率在95%以上,二级反萃率在97%以上,萃取效果明显.  相似文献   

6.
钒钛磁铁矿是我国主要提钒资源,广泛地分布于我国的攀枝花、承德地区。以钠化焙烧—水浸为代表的焙烧浸出工艺存在着污染环境、金属回收率不高的问题,目前正被逐步改进。据统计每生产1 t钛白粉就会排出20%的废酸8~10 t,而中国钛白行业年产废硫酸达到600万吨,直接排放将造成严重的环境污染。该报告围绕无焙烧直接加压酸浸提钒技术中的直接加压酸浸、浸出液中有价元素分离、新型加压连续浸出反应器研发、系统内物流循环与利用、浸出渣的综合利用、工艺放大等研究内容进行,通过相关研究取得以下成果:(1)研究并对比了无焙烧常压酸浸、无盐氧化焙烧常压酸浸、无焙烧氧压酸浸3种提钒过程的现象,结果表明:相比无焙烧常压酸浸、无盐氧化焙烧常压酸浸等2个工艺,明显地具有反应快速、高效的特点。(2)采用硫酸体系加压浸出四川攀枝花地区的转炉钒渣,矿物学表明,转炉钒渣中的主要物相为尖晶石相、钛铁矿相以及铁橄榄石。加压浸出过程中,铁橄榄石和尖晶石相逐渐分解,钒、铁被浸出进入浸出液,部分未反应的钛、硅相在浸出渣中富集。(3)对该技术核心加压酸浸过程进行了放大实验研究,对实验室研究结果进行了验证,放大实验研究结果表明:钒的浸出率随着初始酸度的增加而增加,随着液固比的增大而增大。在加压温度150℃,硫酸浓度300 g/L,搅拌转速300 rpm,浸出时间90 min,液固比8∶1的条件下,钒的浸出率可达到99.10%。(4)提钒酸浸液萃取最优工艺条件为:常温,还原剂用量20 g/L、浸出液p H=2.0、有机相组成为20%P2O4,5%TBP,75%磺化煤油、相比(O/A)=1∶1、震荡时间5 min,钒的一级萃取率达到74.49%,Fe的萃取率仅为1.92%。在最优条件下,进行4级错流萃取,钒的总萃取率可达97.89%。以硫酸为反萃液进行反萃,其最优工艺条件为:反萃时间t=4 min、反萃液浓度200 g/L、反萃相比(O/A)=1∶1时,钒的反萃率达到98%以上。  相似文献   

7.
采用 N72 0 7从无机酸体系中萃取钼 ,考察了影响萃取平衡的主要因素 ,筛选出反萃取条件。萃取钼的最佳条件为起始水相 p H值为 2 .3,萃取剂浓度为 0 .0 1m ol/L ,经二级错流萃取 ,萃取率可达 99.40 % ,而采用 0 .5 mol/L的氢氧化钠反萃负载有机相 ,一级反萃率可达 10 0 % ,并经紫外可见光谱确证 ,其萃取钼的机理属于离子缔合物萃取体系的阴离子交换反应  相似文献   

8.
水厂污泥的铝含量高,是一种重要的铝再生资源。研究了液相离子交换萃取法铝回收技术。采用P204-煤油作为萃取剂,与水厂污泥的酸溶浸出液反应,经3级错流萃取,铝萃取率可达96.3%。以5 mol/L硫酸为反萃剂,在相比(VO∶VA)为5∶1的条件下经3级反萃,铝反萃率达到98.9%,反萃液符合液态商品硫酸铝的质量标准,可作为饮用水处理的混凝剂回用。  相似文献   

9.
以水厂污泥为原料,二-(2-乙基己基)磷酸为萃取剂,煤油为稀释剂,研究了浆液萃取铝回收技术。结果表明:含固率为5%的浆液直接采用P204-煤油萃取,在pH=5.0、cP204=0.5 mol/L、相比(VO∶VA)为1∶1的条件下,铝萃取率可达96.9%以上,萃取剂回收率达到98%以上。以5 mol/L硫酸作为反萃剂,相比5∶1的条件下经3级反萃,可回收97.6%的铝,且反萃液符合液态商品硫酸铝的质量标准,可作为混凝剂利用。  相似文献   

10.
含钼的酸性料液中回收钼的研究   总被引:1,自引:0,他引:1  
采用N235从无机酸体系中萃取钼,考察了影响萃取主要因素,筛选出反萃取条件。萃取钼的最佳条件为:以N235作为萃取剂,浓度为816.00μg/mL含Mo酸浸液为研究对象,确定N235浓度为1.0%,萃取温度为室温(25℃),相比W/O为2∶1,萃取级数为2级,硫酸浓度为0.13 mol.L-1,此时萃取率达到97.38%;反萃时选用氨水浓度为0.27 mol.L-1,相比O/W为1∶1,反萃级数为2级,此时反萃率为99.19%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号