共查询到20条相似文献,搜索用时 15 毫秒
1.
基于深度卷积神经网络的单幅图像超分辨率重建取得了显著研究成果.但随着深度卷积神经网络规模的不断扩大,如何降低网络构建难度和计算成本成为一个难点.为此,提出了一种双通道多感知卷积神经网络(DMCN)模型.该模型在两条具有不同卷积核的通道上建立了稠密连接,并构建了带有动态调节能力的层间融合结构.这种结构的设计使得小规模卷积神经网络便能获得图片特征信息的全面感知能力.实验结果表明,DMCN重建效果优于目前多数具有代表性的重建算法. 相似文献
2.
《云南民族大学学报(自然科学版)》2019,(6):618-623
针对单幅图像超分辨率重建问题(SISR),提出了一种新的基于Dirac残差的超分辨率重建算法.算法使用全局跳跃重建层来直接利用输入LR图像的低频特征,通过多个dirac残差块来自适应学习输入LR图像的高频特征,通过亚像素卷积进行图像重建.算法通过权重参数化来改进残差层,同时使用输入图像的卷积特征与残差网络学习特征结合进行重建.实验采用Adam优化器进行网络训练.使用L1范数作为损失函数.在PSNR、SSIM和视觉效果与其他先进算法进行对比,实验结果表明,在常用测试集上与其他深度学习算法相比有较大提高. 相似文献
3.
针对现有基于深度学习的自然图像超分辨率算法在图像高频细节重建方面的不足,提出了一种更注重图像高频细节重建的双通道残差网络。使用带有通道注意力机制的残差结构作为网络的主通道;为了在重建过程中更好地保留原始图像的几何结构和边缘信息,使用自适应结构化卷积设计了网络的辅助通道,以此构建的双通道残差网络在学习过程中会有更强的高频信息捕获能力;为了使重建图像效果更加符合人眼的主观视觉感受,结合使用L1损失函数和多尺度结构相似度损失函数来训练网络,使网络在训练过程中能够较好地保留图像的视觉效果。实验结果表明:在主通道外并构基于结构化卷积的辅助通道可以使重建图像的峰值信噪比提高2 dB;结合使用L1损失函数和多尺度结构相似度损失函数可以使重建图像的峰值信噪比提高3 dB、结构相似性提高0.5;与同类网络客观定量相比,所提网络在两个公开数据集上取得的效果更优。 相似文献
4.
超分辨率重建技术可以提高图像质量,使原图像具有更丰富的细节信息。针对现有的超分辨率重建算法存在提取特征单一、不利于对图像信息进一步提取的问题,提出了一种基于多尺度特征融合的超分辨率重建算法。采用多特征提取模块获取更多浅层信息,并在网络中添加密集连接结构,增强特征的传播,减少相关参数计算,减轻梯度消失问题。在Set5和Set14基准数据集上进行了测试,并在电力巡检数据集上进一步验证了算法的有效性。与主流的超分辨率重建方法进行了对比,实验结果表明,该方法生成的图像有更加丰富的细节信息,能够有效地改善图像质量,峰值信噪比与结构相似度值较其他主流算法均有一定的提高。 相似文献
5.
提出一种基于深度学习的高效单幅图像超分辨率重建方法,增加一个亚像素卷积层和一个替换的级联卷积,即设计一个具有合适深度的卷积神经网络,以保证图像的重建质量,并采用级联小卷积核提高运行速度.在标准的公共数据集上进行实验测试,结果表明:与亚像素卷积神经网络(ESPCN)算法相比,所提算法重建的高分辨率图像的质量和速度皆显著提高;将其应用于实际项目中,可端到端地重建低分辨率服装风格图像,获得高分辨率图像. 相似文献
6.
近年来,各种基于卷积神经网络的单幅图像超分辨率方法取得了优异的性能提升.现有的超分辨率网络大多数都是使用单种尺度的卷积核来提取低分辨率图像的特征信息,这样很容易造成细节信息的遗漏,也无法很好地利用低分辨率图像的多尺度特征来提高图像的表达能力.为了解决超分辨率重建中存在的问题,提出了一种新的超分辨重建方法称为分型残差网络... 相似文献
7.
提出一种针对中文字体生成图像的超分辨率字体重构方法,以提高字体图像矢量化的准确度.结合字体行业领域知识和图像处理技术将网络生成的9169个字体图像进行超分辨率重构,该方法联合优化了所有网络层,使用双三次插值将单个低分辨率字体图像放大到所需的大小,通过卷积神经网络(CNN)拟合非线性映射输出较高分辨率的字体图像.实验结果表明:提出的方法生成的字体分辨率更高,能更好辅助字体设计师进行字体设计. 相似文献
8.
SRGAN是一种基于生成对抗网络的超分辨重建方法,其生成的高分辨率图像质量较传统方法有着明显提升,然而SRGAN存在着训练过程不稳定,图像浅层特征未充分使用等问题,很大程度上影响到了生成图像的质量。本文提出了一种特征增强改进的SRGAN模型,该模型使用信息蒸馏块进行特征纹理信息的增强,并消除图像特征中的冗余信息。此外,使用相对平均鉴别器替代原始SRGAN中的二分类鉴别器,保证了GAN网络训练的稳定性。本文基于4倍放大因子的超分辨重建任务,在BSD100数据集上进行实验结果的质化评价和量化评价。实验表明,本文方法较之SRGAN在训练过程中具有更好的稳定性,生成的图像具有更清晰的细节纹理,取得了更佳的图像超分辨率重建效果。 相似文献
9.
《云南民族大学学报(自然科学版)》2019,(6):597-605
图像超分辨率重建(super-resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在目标检测、医学成像和卫星遥感等领域都有着重要的应用价值.近年来,随着深度学习的迅速发展,基于深度学习的图像超分辨率重建方法取得了显著的进步.为了把握目前基于深度学习的图像超分辨率重建方法的发展情况和研究热点,对一些最新的基于深度学习的图像超分辨率重建方法进行了梳理,将它们分为两大类(有监督的和无监督的)分别进行阐述.然后,在公开的数据集上,将主流方法的性能进行了对比分析.最后,对基于深度学习的图像超分辨率重建方法进行了总结,并对其未来的研究趋势进行了展望. 相似文献
10.
【目的】针对Mean squared error(MSE)作为损失函数在人眼感知方面存在局限性,以及基于卷积神经网络的图像超分辨率(Super-resolution,SR)算法生成的图像存在参数较多、计算量较大、训练时间较长、纹理模糊等问题,设计基于深层卷积神经网络的单幅图像超分辨率重建模型。【方法】使用ImageNet预先训练的大型卷积神经网络Visual geometry group(VGG)模型提取图像特征,利用该特征设计视觉感知损失函数进行训练学习,引入亚像素卷积层(Sub-pixel convolution)替换上采样层,缓解生成图像的棋盘效应。【结果】设计的模型对放大两倍的图像进行超分辨率修复,与其他4种超分辨率重建模型的Peak signal to noise ratio(PSNR)值接近,且生成图像的视觉效果更加清晰逼真,细节更加细腻。【结论】该模型可以实现输入不同大小的低分辨率图像而不必多次训练学习不同比例的放大模型,可以实现对不同放大倍数图像的训练和预测,在保持一定PSNR正确率的前提下,放大后的超分辨率图像能够恢复更多纹理细节和更佳视觉效果。 相似文献
11.
超分辨率生成对抗网络(SRGAN)的高分辨率图像质量较传统方法有明显提升,然而其存在训练过程不稳定、图像浅层特征未充分使用等问题,很大程度上影响生成图像的质量.为此,提出一种特征增强改进的SRGAN模型,使用信息蒸馏块.通过对长短途特征在图像通道上的拼接增强特征纹理信息,利用压缩单元消除图像特征中的冗余信息.此外,使用相对平均鉴别器替代原始SRGAN中的二分类鉴别器,保证生成对抗网络训练的稳定性.本研究基于4倍放大因子进行超分辨重建任务,并在BSD100和SET14数据集上进行实验结果的质化和量化评价.实验表明,该方法较之SRGAN在训练过程中具有更好的稳定性,生成的图像具有更清晰的细节纹理,取得了更佳的图像超分辨率重建效果. 相似文献
12.
从低分辨率图像中提取特征图恢复高分辨率图像中的高频信息是超分辨率重建的一个关键问题,针对该问题提出一个新的基于卷积神经网络的超分辨率重建算法.网络结构由卷积层与子像素卷积组成,特征提取网络中卷积层提取低分辨率图像的特征,重建网络中子像素卷积神经网络作为上采样算子.针对不能充分利用多级特征图的问题,采用跳跃连接和特征图联结在特征提取网络末端跨通道融合特征图,同时降低特征图的维度.并在此基础上再次提取特征图应用于重建.实验结果表明,算法在PSNR、SSIM和人类视觉效果上与其他基于深度学习的算法相比有着显著的提高. 相似文献
13.
为利用多尺度信息重建超分辨率图像,提出多尺度卷积神经网络的图像超分辨率重建算法。算法利用不同尺度的卷积核提取图像特征,为图像重建提供不同大小的邻域信息;用瓶颈层融合多尺度特征图,增强网络非线性表示能力,降低中间层输出的维数,提高图像的超分辨率重建性能。多个测试集上的实验结果表明,多尺度卷积神经网络算法优于现有的单幅图像超分辨率方法。 相似文献
14.
15.
为提高图像超分辨率重建技术实时应用的可能性,增强其对配准误差的容忍度,提出了一种基于Keren配准和插值的快速鲁棒超分辨率图像重建算法.该算法将配准后的低分辨率图像根据变换参数映射到高分辨率网格上,再利用模板卷积迭代地填充缺失像素值,从而重建一幅高分辨率图像.将文中算法与非均匀插值法、凸集映射法、鲁棒的迭代后向映射法和... 相似文献
16.
孔繁庭 《甘肃联合大学学报(自然科学版)》2015,29(2):66-68,92
图像超分辨率重建是指从一幅或多幅低分辨率、低质量图像中产生高分辨率、高质量图像的数字信号处理技术.本文分析了基于多幅的图像超分辨率重建方法,并讨论了目前基于多幅的图像超分辨率重建有待解决的问题. 相似文献
17.
针对图像超分辨率重建算法在图像高频信息恢复过程中特征提取不充分、利用效率不高、重建高频细节能力不足等问题,本文提出了一种基于信息蒸馏级联伸缩网络的图像超分辨率重建算法.首先,构建特征可伸缩的信息蒸馏块,通过扩大信息蒸馏中输入信息的特征感受野,以及采用通道注意力提取感兴趣信息,解决了信息蒸馏的图像超分辨率重建非线性映射过程中特征提取不充分的问题;然后,设计级联残差叠加映射块,该块将多个残差块组合在一起,通过将残差结构中的残差部分引出并采用级联叠加的方式,增加了信息蒸馏块间信息的传递,使提取的特征信息包含更多细节.实验结果表明,本文算法重建图像相比其他对比算法更为清晰,峰值信噪比(PSNR)和结构相似度(SSIM)均有较大的提升. 相似文献
18.
对单幅彩色图像进行超分辨率(Super-resolution,SR)重建,一般是将原始RGB图像转换为YUV图像,对亮度分量Y进行SR,而对色度分量U、V只进行简单的插值.因为图像插值很容易产生边缘模糊和锯齿,本文用彩色化算法对低分辨率的U、V分量进行处理,并提出一种基于彩色化的迭代反投影(Itherative Back-projection,IBP)方法,改善了传统基于插值的IBP算法对边缘图像的处理效果.实验结果表明,文中算法得到图像的客观质量和主观质量既优于传统的基于双立方插值处理的SR彩色图像,也优于其它以彩色化为基础进行色度图像处理的SR图像. 相似文献
19.
岩石薄片图像对研究石油地质特性以及油气勘探都有重要的意义.由于各种因素的限制,获取到的岩石薄片图像经常会出现分辨率较低的情况,一定程度上限制了研究者对其细节信息的掌握.而一般的神经网络超分辨率算法都需要大量的数据作为训练集,为了提升岩石薄片图像超分辨率重建算法纹理细节信息还原能力,本文利用单图像生成式对抗网络,不需输入... 相似文献
20.
在进行图像超分辨率重建时,使用多幅图像比使用一副图像能够得到更好的效果,但是目前基于多幅图像的超分辨率重建算法普遍存在重建速度慢、重建质量不够理想的问题。为此,本文构造了一种基于块对称对叠(PsyCo)的多幅图像超分辨率重建算法,首先对低分辨率图像序列进行基于ORB的图像配准,再对配准后的图像进行PSyCo重建,最后对重建的图像进行像素灰度最大值融合。实验结果表明,本文提出的重建算法具有更好的重建效果,并且具有较快的重建速度。 相似文献