首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于正交最小二乘法模糊模型的短期负荷预测   总被引:5,自引:0,他引:5  
将正交最小二乘法(OLS)模糊模型用于电力系统短期负荷预测,其推理系统模糊规则的生成、影响因素的选取和隶属度的确定均利用正交最小二乘法从历史数据中直接获得,从而克服了模糊推理系统的知识由咨询专家和经验来产生所造成的知识获取的“瓶颈”现象。相应的数学模型简洁有效。实际算例表明,该方法的预测精度较径向基网络法高0.3%-0.5%,每个模型运算仅需1s左右,具有较强的实用性。  相似文献   

2.
利用多分辨分析的小波变换对短期电力负荷序列进行了分解处理.将负荷序列投影到不同的尺度上,根据其在各尺度上子序列的特性分别进行回归预测.最后将预测结果叠加,得到最佳预测结果.结果表明,该方法能够取得较好的预测精确度.  相似文献   

3.
基于神经网络的短期电力负荷预测   总被引:2,自引:0,他引:2  
采用神经网络方案来进行短期电力负荷预测,探讨了负荷模型分类模,对应用于实际的神经网络算法进行了具体处理,如数据的归一化问题,网络权值与阈值的初始值选定,训练样本的选择策略等。  相似文献   

4.
在燃气负荷预测中,由于日负荷的不稳定,仅以历史负荷为训练样本得到的人工神经网络难以满足日预测的精度要求。提出一种小波分析与BP神经网络相结合的预测方法。首先,将历史负荷序列进行小波分解成概貌序列和细节序列,并在此基础上利用概貌序列、细节序列,以及指数平滑和温度等多种因素训练BP神经网络,预测出未来燃气的日负荷。最后,对...  相似文献   

5.
朱兴统 《科学技术与工程》2012,12(24):6171-6174
提出融合模拟退火(Simulated annealing,SA)和最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)的电力短期负荷预测方法.由于LSSVM的预测精度依赖于其参数的选择,并且难以选取合适的参数值,因此,参数选择是LSSVM的一个关键问题.为了提高参数选择的质量和效率,采用SA算法进行LSSVM的参数寻优.以某市2010年1月1日至2011年1月7日的电力负荷数据和气象数据进行仿真实验, 实验结果表明该方法具有较高的预测精度.  相似文献   

6.
短期电力负荷预测的小波支持向量机方法研究   总被引:11,自引:0,他引:11  
在充分研究和比较多种负荷预测方法的基础上,提出一种称为小波支持向量机(Wavelet Support Vector Machines,WSVM)的负荷预测新算法.该方法是在研究支持向量机(SVM)核方法与小波框架理论的基础上,引入非线性小波基函数来构造SVM的核函数,从而得到新的SVM模型,并给出了此模型的结构设计与实现算法.通过实例验证,该方法能有效提高预测精度.  相似文献   

7.
分析不同规模的配电网负荷,验证了配电网短期负荷变化复杂的特征,采用单一预测方法进行配电网短期负荷的预测仿真.考虑到配电网短期负荷变化规律性不明显的特点,利用db4小波函数对配电网的历史负荷数据序列进行最大尺度分解重构,将历史数据划分成不同频段的分量,根据不同频段负荷分量特点分别采用GM(1,1)模型、时间序列法及二次指数平滑法对低、中、高频分量进行预测,再将各分量预测值叠加得到总的预测结果.结果表明,该组合预测法可有效提高预测精度,获得较为满意的预测结果.  相似文献   

8.
自适应神经网络在短期负荷预测中的应用   总被引:2,自引:0,他引:2  
采用基于混沌算法的自适应预测模型,应用于电力系统短期负荷预测.选取重构相空间中的饱和嵌入维数作为神经网络的输入节点数,适当选择非线性反馈项,能使网络的动力学在权空间具有混沌行为.通过进化算法建立一种自适应机制,使得网络能够根据学习和训练的结果优化非线性反馈项.算例表明,该算法具有很强的自适应能力和鲁棒性,精度高.  相似文献   

9.
电力系统短期负荷预测是电力生产部门的重要工作之一,本文利用BP神经网络进行电力系统短期负荷预测时,根据影响因素确定了模型构成,并对输入变量选择进行了讨论,典型算例的计算表明该方法是有效的。  相似文献   

10.
针对现有的短期负荷预测方法易陷入局部极值以及预测精度不高等缺陷,文中提出了一种基于改进免疫算法优化BP神经网络的短期智能负荷预测方法.通过利用改进的矢量距优化免疫网络,从而达到优化网络的目的.融入免疫调节原理,引入抗体浓度的概率选择式,采用自适应变化策略重新设计变异算子,利用新的变异尺度设计种群抗体,采用新的神经元适应度函数,并结合免疫网络调节的进化算法进行网络学习.实例分析表明,基于改进免疫网络优化的BP网络短期负荷预测算法比混沌算法优化BP网络算法精度更高,更具实用性.  相似文献   

11.
小波神经网络在绝缘子漏电量预测中的应用   总被引:1,自引:0,他引:1  
刘唯义  王丽侠 《应用科技》2007,34(6):12-14,22
为了实现对绝缘子漏电量的准确预测,提出了基于小波神经网络的预测模型,分析了网络的拓扑结构,给出了网络学习方法.通过对绝缘子漏电量样本数据进行预处理,生成学习样本和测试样本,进而对预测模型进行测试,实现了对绝缘子漏电量的准确预测.将其应用于电业局的绝缘子漏电量预测中,达到了实际应用的精度要求.实验和实际应用表明,该预测模型的误差小,精确度高,能有效地预测绝缘子漏电量。  相似文献   

12.
针对无线传感器网络传输过程中容易受到噪音干扰的问题,提出了一种新的业务流预测算法AWNNP(Ant colony-based Wavelet Neural Network Prediction).该算法首先利用小波变换对业务流进行分解,并将其小波系数和尺度系数作为样本数据.其次,结合蚁群算法和神经网络来训练样本数据,采用小波模型重构进行重构,以此获得业务流的预测数据.同时,通过仿真实验对比,并分析了小波神经网络预测算法和BP神经网络预测算法,实验结果表明,AWNNP算法性能较优,其误差为16.21%.  相似文献   

13.
利用残值学习算法进行小波节点的选择,利用Akaike 准则确定预测模型的结构,采用误差反传方法在线调整网络连接参数.通过建立的自适应神经网络模型有效辨识船舶操纵运动动态.船舶航向预报仿真结果显示,基于小波神经网络的船舶航向预测器可以较高精度预报船舶操纵运动过程中船舶航向的变化.  相似文献   

14.
随着网络控制研究的兴起,对工业以太网延时进行补偿成为研究的重点方向.针对网络延时给网络控制系统带来的问题,提出用小波神经网络对工业以太网延时进行预测,根据输入的过去时间延迟序列预测输出下一采样时刻的网络延时值.预测模型的参数通过训练算法实时更新,以保证预测输出的准确性.对实际工业以太网延时数据样本的预测分析表明,该预测模型能够有效预测延时.为进一步说明延时预测效果,将延时预测模型应用于网络控制系统进行延时的预测与补偿,系统仿真结果证明了预测模型预测的准确性及补偿的有效性.  相似文献   

15.
一种面向工作站网络的系统负载预测方法   总被引:8,自引:0,他引:8  
提出一种应用人工智能技术方法解决基于PVM环境的负载平衡问题,采用多项负载指标表示结点的负载情况,总利用BP算法,预测未来的负载情况,解决了采用多项负载指标所带来的系统开销大的问题,在任务分配与任务执行时,应用人工智能技术预测各结点的负载情况,找到较佳的分配方案,实验结果证明,本算法较通常的算法在性能上有很大的提高。  相似文献   

16.
通过将Morlet母小波基函数作为神经网络隐含层神经元的激励函数,构建了Morlet小波神经网络,对网络结构进行了隐含层节点的优化,对股票收盘价的变化进行仿真和预测,实验结果表明,Morlet小波神经网络具有较好的逼近非线性映射的能力,其泛化性能和预测能力较优.  相似文献   

17.
研究了小波神经网络用于信号分类识别的模型结构,建立了非显式小波网络的学习算法,给出了一种改进的小波经网络模型,并把该模型应用于电力系统故障信号识别,提高了信号分类识别的精度。  相似文献   

18.
本文建立了一种基于径向基(RBF)神经网络的建筑物空调负荷预测模型。对广州市某办公楼在夏季不同月份的逐时冷负荷,分别用RBF神经网络模型和BP神经网络模型进行训练和预测计算,发现RBF神经网络模型预测的均方根误差ΔRMSE和平均相对误差ΔMRE都仅是BP神经网络方法的64%左右。仿真结果表明径向基(RBF)神经网络具有更高的预测精度及更好的泛化能力,是建筑物空调负荷预测的一种有效方法。  相似文献   

19.
极小最小二乘问题在神经网络中的应用   总被引:2,自引:0,他引:2  
为了解决在神经网络的前馈算法中矩阵的极小最小二乘的失效问题,在Matlab和C 的平台上研究并比较了奇异值分解(SVD)、超松弛迭代(SSOR)和共轭梯度法(CG)几种算法在解上千阶矩阵最小二乘问题的优劣。SSOR算法在百阶的条件下,具有实用性;CG算法和SVD算法在千阶的条件下,可以取得比较好的收敛速度和比较高的精度。这两种算法还可以继续完善。CG算法可加预处理方法使其更加稳定,收敛更快。该文研究表明SVD和CG算法可以有效的解决经典算法如QR算法在大中规模矩阵条件下,解最小二乘问题失效的问题。  相似文献   

20.
基于现代误差修正技术,研究小波神经网络建立的动态测量误差预测模型,以进行误差修正,提高动态测量精度,避免了传统神经网络需要人为干预网络结构参数的不足。文章介绍了建模方法,重点对大轴圆度误差测量过程中的动态测量数据进行实例分析,结果表明,该模型预测精度高,具有重要的应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号