首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The mechanical properties and water solubility of electrospinning SF films limit their use as biomaterials. In order to develop a tissue engineering biomaterial with both satisfying biological properties and sufficient biomechanical properties,blended films composed of silk fibroin( SF) and poly( ε-caprolactone)( PCL) were fabricated by electrospinning in this study. Scanning electron microscope( SEM), X-ray diffraction( XRD),thermal analysis,Fourier transform-infrared( FT-IR),Raman spectra,mechanical testing,and water solubility were used to characterize the morphological, structural and mechanical properties of the blended electrospinning films. Results showed that the diameter of the blended fiber was distributed between 600 and1000 nm,and the fiber diameter increased as the PCL content increased. There is no obvious phase separation due to the similarity and intermiscibility,as well as the interactions( mainly hydrogen bonds), between the two polymers. Meanwhile, the secondary structures of SF changed from random coils and Silk I to Silk II because of the interactions between SF and PCL. For this reason,the tensile strength and elongation at break of the electrospinning films improved significantly,and the water solubility decreased. In conclusion,the blended electrospinning films fabricated in this study showed satisfying mechanical properties and water insolubilities,and they may be promising biomaterials for applications in tissue engineering for blood vessels,nerve conduits,tendons,ligaments and other tissues.  相似文献   

2.
Mismatch in mechanical properties can induce intimal hyperplasia,which is one of the main reasons for the failure of small diameter artificial blood vessels. Electrospun small diameter tubes with tailored mechanical properties were fabricated through blending poly( L-lactide-co-ε-caprolactone)( PLCL) and silk fibroin( SF)with the mass ratios of 30 /70,50 /50,and 70 /30 in this study.Scanning electron microscopy( SEM) and mechanical testing were used to characterize morphological and mechanical properties of the tubes. Results showed that tensile strength of the tubes was higher than most of the native blood vessels,and elongations at break of them were improved greatly by blending PLCL. Compliances of the tubes were all higher than 1% /13. 33 kPa( 1% /100 mmHg).Particularly,tubes with blending mass ratio of 50 /50 showed similar compliance with human native femoral arteries,which provided a promising biomaterial that could be applied on small diameter vascular applications.  相似文献   

3.
Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene glycol 1000 succinate( VE TPGS) via electrospinning. SEM images show that the average nanofibrous diameter has no significant difference when the content of VE TPGS increases to 4. 0%( SF / HBC). However,the average nanofibrous diameter decreases largely to 200 nm when the VE TPGS content reaches 6. 0%. Furthermore,VE TPGS presents a sustained release behavior from the nanofibrous scaffolds. Cell viability studies of mouse skin fibroblasts( L929) demonstrate that VE TPGS loaded SF / HBC nanofibrous scaffolds present good cellular compatibility.Moreover,the incorporation of VE TPGS could strengthen the ability of SF / HBC nanofibrous scaffolds on protecting the cells against oxidation stress using the Tertbutyl hydroperoxide( t-BHP)-induced oxidative injury model. Therefore,VE TPGS-loaded SF /HBC nanofibrous scaffolds might be potential candidates for personal skin care,wound dressing and skin tissue engineering scaffolds.  相似文献   

4.
Antimicrobial poly( vinyl alcohol)( PVA) nanofibrous composites were prepared by adding 3-( 2,3-dihydroxypropyl)-5,5-dimethylimidazolidine-2,4-dione( N-halamine diol) to the PVA solution using electro-spinning technique upon curing and exposure to diluted sodium hypochlorite. Scanning electron microscopy( SEM) demonstrates that PVA nanofibers formed with diameters of( 255 ±94) nm. Cross-linked PVA nanofibers with N-halamine diol precursor and 1,2,3,4-butanetetracarboxylic( BTCA) showed good water resistance. The chlorinated PVA nanofibrous mats completely inactivated Staphylococcus aureus( Gram-positive) and Escherichia coli O157: H7( Gram-negative) with 7 log reductions( the reduction of the bacterial concentration in logarithm) within 5min and 1 min of contact time,respectively.  相似文献   

5.
Electrospun aligned ultrafine fibers of poly( lactide-coglycolide)( PLGA) can be used to construct biomimetic scaffolds for engineering those structurally anisotropic and dense tissues( e. g.,tendon,ligament,etc.). But the acidic degradation products of the PLGA could result in p H decrease in the vicinity of the scaffolds,which may give rise to biocompatibility concerns. To address the noted problem, this study was designed to evaluate the p Hcompensation capacity of using Lysine( Lys) —a kind of basic amino acid on the acidic degradation products of PLGA. Ultrafine PLGA( 50∶ 50) fibers with 0,10%,20%,and 30% by weight of Lys loadings were prepared by a stable jet electrospinning( SJES)approach. The morphology,structure,and mechanical properties of the electrospun aligned fibrous mats of Lys-incorporated PLGA( 50∶50) were characterized by scanning electron microscope( SEM),Fourier transform infrared spectroscopy( FTIR),and tensile testing,respectively. Thereafter,the fibrous PLGA( 50 ∶50) scaffolds were subjected to degradation by being immersed in phosphate buffered saline( PBS,p H 6. 86) solution at 37 ℃ for 5weeks. Our results show that the formed Lys / PLGA composite ultrafine fibers have a well-aligned and uniform morphology with a fineness of ca. 1 #m in diameter. Introduction of Lys led to increased mechanical performance; that is,when the Lys loading is less than 30%,tensile strength and Young's modulus of the aligned Lys / PLGA fibers reached up to the impressive values of 84. 5 MPa and 2. 4 GPa,respectively. Degradation results show that the p H of the PLGA group fell to 5. 6 in 5 weeks while the p H of the Lys /PLGA groups with 10%,20%, and 30% of Lys loadings was maintained at 6. 3, 6. 5 and 6. 7, respectively. This work demonstrated that incorporation of Lys into electrospun PLGA fibers could be an effective approach in mediating the p H decrease caused by the acidic degradation products of the PLGA.  相似文献   

6.
The influence of mica particles on the rheological and thermal properties of poly( lactic acid)( PLA) / mica composites were investigated by capillary rheometer and thermogravimetric( TG)analysis. The results show that the PLA / mica blends are nonNewtonian pseudoplastic and display shear-thinning. The value of non-Newtonian index of the blends melt decreased obviously with the addition of mica particles but somehow even increased when shear rate exceeded 4 500 s- 1. In this work,it could be indicated that appropriate amount of mica particles could somehow enhance the resistance of PLA melt under high shear rate to deviate from Newtonian fluid. TG analysis shows that the thermal stability of PLA decreases a little after the incorporation of the mica particles.As mica particles decompose in a completely different way in contrast to PLA,this abnormal decrease of thermal stability of PLA / mica composite may be attributed to moisture stored between mica layers released at high temperature.  相似文献   

7.
采用盐酸胍法从经PHA诱导的小儿扁桃体淋巴细胞中提取总RNA,经Oligo(dT)-纤维素柱层析制备了Poly(A)-RNA。经蔗糖线性密度梯度超速离心步骤,富集了含IL-2mRNA的Poly(A)-RNA。经麦胚无细胞体系翻译实验表明,富集后的Poly(A)-RNA具有良好的模板翻译活性,其~3H-亮氨酸参入活性是对照的5.1倍。又以此富集了的Poly(A)-RNA为模板,按照Watson和Jackson的最新方法合成了小儿扁桃体淋巴细胞的双链cDNA。经碱性凝胶电泳检查,用此方法合成的cDNA长度最长的超过了IL-2的cDNA长度。  相似文献   

8.
IntroductionPoly(m-phenyleneisophthalamide)(PMIA)fibers arei mportant materials with excellent ther mal and oxidativestability,flame resistance,and dielectric properties.Thedecomposition temperature of PMIA is400430℃andeven under this temperature it releases little har mful gases.Unlike flame-retardant treated materials,PMIAfibers areinherently flame resistance and it will not di minish duringthe life of the fiber.The fiber s low tenacity and highelongation give it textile-like character…  相似文献   

9.
The monomer 6-O-vinyladipoyl-D-glucopyranose( VAG)was synthesized by lipase catalyzed trans-esterification of divinyladipate with D-glucopyranose. A novel double hydrophilic glycopolymer poly( diethyleneglycol methacrylate-co-6-Ovinyladipoyl-D-glucopyranose)( P( DEGMA-co-VAG)) with narrow polydispersity( PDI) and thermosensitivity was prepared by reversible addition-fragmentation chain transfer( RAFT)polymerization. P( DEGMA-co-VAG) was characterized by1 H NMR,FTIR and gel permeation chromatography( GPC). The characterization of UV-visible spectroscopy showed that the micelles from glycopolymer P( DEGMA-co-VAG) were thermo-responsive and the low critical solution temperature( LCST) could be controlled by the molar ratio of monomers. When the molar ratio of DEGMA and VAG was 2∶ 1,the LCST of P( DEGMA-co-VAG) was36 ℃ in aqueous solution,which could form nano micelles in the human body environment. It was found that P( DEGMA-co-VAG)was non-toxic at 0. 1-1 mg / m L concentrations when incubated with pig iliac endothelial cells( PIECs) for 24 h. Thus,the synthesized glycopolymers has great potential as drug delivery carriers.  相似文献   

10.
11.
The conventional silk fibroin(SF)films obtained by casting from SF aqueous solution are amorphous,and easily dissolved in water.This defect limits the practical use of SF films in biomedical field.A new water-insoluble silk fibroin film(an SF-FA film)could be simply prepared by casting from SF formic acid solution.The physical properties and moisture permeability of SF-FA films were examined.The results show that the SF-FA film swollen in water exhibits outstanding pliability.The weight loss of SF-FA films ...  相似文献   

12.
In this study, the outstanding biocompatibility of silk fibroin (SF) and the highly efficient anti-bacterial effect of nano silver (NS) were utilized to prepare SF/NS composite film with anti- bacterial property. The structure and property of the film were characterized. The results showed that the structure of SF in the film was mainly silk I. SF in the film was almost insoluble in water. The tensile strength of film with NS was significantly lower than that of films without NS. When the addition of NS was within the range of 0%-0.6%, the elongation at break had no significant difference. The antibacterial rate of the film on staphylococcus aurens and escherichia coil increased with the amount of NS. The minimum amount of NS in the fdm was O. 1% and the maximum amount was 0.5%.  相似文献   

13.
用溶胶-凝胶法制备了纳米二氧化钛再生丝素复合膜,并用扫描电镜(SEM)、X射线(XRD)、热重分析(TGA、DTG)对复合丝素膜的结构与性能进行了表征。结果表明:加入纳米二氧化钛颗粒后再生丝素膜的热转变温度提高;再生丝素的结晶构象由S ilk I向S ilk II转变,结晶度增加。  相似文献   

14.
Electrospinning technique was used for the fabrication of poly ( vinyl alcohol ) ( PVA ) / regenerated silk fibrnin ( SF ) composite nanofibers, loaded with ciprofloxacin HCI (CipHCI) as a wound dressing. Electrospun PVA/SF/CipHCI composite nanofibers were stabilized against dissolving in water by heating in an oven at 155℃ for 5 min. Incorporation of CipHCi into electrospun nanofibers was confirmed by SEM and FT.IR spectra. Further the mechanical properties test illustrated that the addition of CipHCI enhanced the mechanical properties of PVA and PVA/SF nanofibers. The antibacterial activities against Escherichia coU (E. coli ) ( gram-negative ) and Staphylococcus aureus ( S. aureus ) (gram-positive) organisms were evaluated by disk diffusion method; and results suggested that electrospun PVA/CipHCI and PVA/SF/ CipHCI composite nanofibers showed a remarkable antibacterial activity.  相似文献   

15.
聚乙二醇-丝素共混膜物理性能的研究   总被引:3,自引:0,他引:3  
不同相对分子质量的聚乙二醇(PEG)以不同比例混入丝素可形成共混丝素膜,并具有良好的拉伸性、透水、透;气、透光性和一定的生物降解与溶解性。实验结果表明:虽PEG和丝素的可混合性稍差,但在一定的透水、透汽性和较好的柔韧性前提下,可达到创面膜的基本要求。  相似文献   

16.
再生丝素固体的微细结构   总被引:3,自引:0,他引:3  
研究了蚕丝丝素水溶液经不同方式干燥后,所得到的再生丝素固体的微细结构,以及存放过程中丝素的结构变化,指出经30℃热风干燥或经高于-20℃冷冻干燥后,所得到的丝素固体的结构是无定形和Silk I共存,在室内温度湿度环境中存放后,部分无定形结构转化为Silk I;蚕丝丝素水溶液经-80--20℃冷冻干燥后,所得到的丝素膜的结构主要是无定形,含少量Silk II,存放过程中部分无定形结构转化为SilkI;室温放所自然形成的丝素凝胶中,丝素的结构是无定形和Silk Ⅱ共存;丝素水溶液表面膜中甘氨酸和丙氨酸的含量较高,表面膜的结构主要是Silk I和Tilk Ⅱ结晶度高。  相似文献   

17.
Fine Structure of Regenerated Silk Fibroin Solids   总被引:1,自引:0,他引:1  
IntroductionSilkfibroin (Bombyxmori)isthepolymerwithtwokindsofcrystalstructure,silkⅠandsilkⅡ[1,2 ] .ThespaceconformationofsilkⅠtakesontheshapeofcrookedhandle ,theintermediateformbetweenα spiralstructureandβ foldedstructure ,andthatofsilkⅡisanti parallelβ folde…  相似文献   

18.
Silk fibroin/cellulose blend films were prepared using Nmethylmorpholine-N-oxide (NMMO) as solvent. The effects of different proportions and solid contents on properties of blend films were discussed. The mechanical properties showed that the blend films had preferable moisture permeability and a high strength. The structures of the blend films were investigated by infrared spectrum and X-ray diffraction. The results indicated the occurrence of hydrogen bonds between hydroxyl groups of cellulose and amido groups of fibroin.  相似文献   

19.
多孔丝素材料的结构与性能研究   总被引:6,自引:0,他引:6  
用CaCl2.CH3CH2OH.H2O三元溶剂溶解蚕丝丝素,通过对丝素溶液冷冻之后的状态,以及冷冻干燥后丝素结构和性质的测试和分析,指出采用冷冻干燥制备再生蚕丝丝素多孔材料时,若冷冻温度低于-20℃,则丝素的结构以无定型为主,含少量的SilkII,若冷冻温度高于-20℃,则又增加了较多的SilkI,采用冷冻干燥法可以制得平均孔径为10-300um,孔密度为1-2000个/mm^2,孔隙率为35%-70%的多孔丝素材料,通过调节冷冻温度和丝素溶液质量分数,达到控制多孔丝素材料的上述表态结构,聚集态结构和透湿性,压缩性,强度,伸长率等物理性能的目的是可能的,将快速冷冻的丝素水溶液真空干燥之前,进行反复解冻-冷冻-则所制得的多孔丝素材料的孔径增大,孔密度减小,同时其压缩率和透湿性有所提高,拉伸断裂强度和在热水中的溶失率下降。  相似文献   

20.
In this article the structure and properties of freeze-dried porous silk fibroin materials were tested and analyzed.The results indicated that for porous silk fibroin materials prepared by means of freeze-drying,if freez-ing temperature was below —20℃,the structure of silk fibroin was mainly amorphous with a little silk Ⅱ crystal structure,and if freezing temperature was above —20℃,quite a lot of silk Ⅰ crystal structure formed.Porous silk fibroin materials,with average pore diameter be-  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号