首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This paper employs a non‐parametric method to forecast high‐frequency Canadian/US dollar exchange rate. The introduction of a microstructure variable, order flow, substantially improves the predictive power of both linear and non‐linear models. The non‐linear models outperform random walk and linear models based on a number of recursive out‐of‐sample forecasts. Two main criteria that are applied to evaluate model performance are root mean squared error (RMSE) and the ability to predict the direction of exchange rate moves. The artificial neural network (ANN) model is consistently better in RMSE to random walk and linear models for the various out‐of‐sample set sizes. Moreover, ANN performs better than other models in terms of percentage of correctly predicted exchange rate changes. The empirical results suggest that optimal ANN architecture is superior to random walk and any linear competing model for high‐frequency exchange rate forecasting. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
    
Conventional wisdom holds that restrictions on low‐frequency dynamics among cointegrated variables should provide more accurate short‐ to medium‐term forecasts than univariate techniques that contain no such information; even though, on standard accuracy measures, the information may not improve long‐term forecasting. But inconclusive empirical evidence is complicated by confusion about an appropriate accuracy criterion and the role of integration and cointegration in forecasting accuracy. We evaluate the short‐ and medium‐term forecasting accuracy of univariate Box–Jenkins type ARIMA techniques that imply only integration against multivariate cointegration models that contain both integration and cointegration for a system of five cointegrated Asian exchange rate time series. We use a rolling‐window technique to make multiple out of sample forecasts from one to forty steps ahead. Relative forecasting accuracy for individual exchange rates appears to be sensitive to the behaviour of the exchange rate series and the forecast horizon length. Over short horizons, ARIMA model forecasts are more accurate for series with moving‐average terms of order >1. ECMs perform better over medium‐term time horizons for series with no moving average terms. The results suggest a need to distinguish between ‘sequential’ and ‘synchronous’ forecasting ability in such comparisons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
    
In this article we model the log of the US inflation rate by means of fractionally integrated processes. We use the tests of Robinson (1994) for testing this type of hypothesis, which include, as particular cases, the I(0) and I(1) specifications, and which also, unusually, have standard null and local limit distributions. A model selection criterion is established to determine which may be the best model specification of the series, and the forecasting properties of the selected models are also examined. The results vary substantially depending on how we specify the disturbances. Thus, if they are white noise, the series is I(d) with d fluctuating around 0.25; however, imposing autoregressive disturbances, the log of the US inflation rate seems to be anti‐persistent, with an order of integration smaller than zero. Looking at the forecasting properties, those models based on autocorrelated disturbances (with d < 0) predict better over a short horizon, while those based on white noise disturbances (with d > 0) seem to predict better over longer periods of time. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
    
At what forecast horizon is one time series more predictable than another? This paper applies the Diebold–Kilian conditional predictability measure to assess the out‐of‐sample performance of three alternative models of daily GBP/USD and DEM/USD exchange rate returns. Predictability is defined as a non‐linear statistic of a model's relative expected losses at short and long forecast horizons, allowing flexible choice of both the estimation procedure and loss function. The long horizon is set to 2 weeks and one month ahead and forecasts evaluated according to MSE loss. Bootstrap methodology is used to estimate the data's conditional predictability using GARCH models. This is then compared to predictability under a random walk and a model using the prediction bias in uncovered interest parity (UIP). We find that both exchange rates are less predictable using GARCH than using a random walk, but they are more predictable using UIP than a random walk. Predictability using GARCH is relatively higher for the 2‐weeks‐than for the 1‐month long forecast horizon. Comparing the results using a random walk to that using UIP reveals ‘pockets’ of predictability, that is, particular short horizons for which predictability using the random walk exceeds that using UIP, or vice versa. Overall, GBP/USD returns appear more predictable than DEM/USD returns at short horizons. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
使用1989~2007年日本对我国8个制造业部门的外商直接投资数据和日元对人民币汇率数据,采用面板数据的GLS回归分析。研究发现:日元汇率波动对日本对华直接投资的影响存在显著的行业效应,具体为,日元升值显著促进日本时我国8个制造业部门的直接投资,日元贬值则抑制直接投资,且各行业间的影响程度有差别;日元汇率波动性对每个行业的影响均是负的,且对电子与运输设备行业的影响是显著的。  相似文献   

6.
In the last decade, neural networks have emerged from an esoteric instrument in academic research to a rather common tool assisting auditors, investors, portfolio managers and investment advisors in making critical financial decisions. It is apparent that a better understanding of the network's performance and limitations would help both researchers and practitioners in analysing real‐world problems. Unlike many existing studies which focus on a single type of network architecture, this study evaluates and compares the performance of models based on two competing neural network architectures, the multi‐layered feedforward neural network (MLFN) and general regression neural network (GRNN). Our empirical evaluation measures the network models' strength on the prediction of currency exchange correlation with respect to a variety of statistical tests including RMSE, MAE, U statistic, Theil's decomposition test, Henriksson–Merton market timing test and Fair–Shiller informational content test. Results of experiments suggest that the selection of proper architectural design may contribute directly to the success in neural network forecasting. In addition, market timing tests indicate that both MLFN and GRNN models have economically significant values in predicting the exchange rate correlation. On the other hand, informational content tests discover that the neural network models based on different architectures capture useful information not found in each other and the information sets captured by the two network designs are independent of one another. An auxiliary experiment is developed and confirms the possible synergetic effect from combining forecasts made by the two different network architectures and from incorporating information from an implied correlation model into the neural network forecasts. Implied correlation and random walk models are also included in our empirical experiment for benchmark comparison. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
8.
    
Long‐range persistence in volatility is widely modelled and forecast in terms of the so‐called fractional integrated models. These models are mostly applied in the univariate framework, since the extension to the multivariate context of assets portfolios, while relevant, is not straightforward. We discuss and apply a procedure which is able to forecast the multivariate volatility of a portfolio including assets with long memory. The main advantage of this model is that it is feasible enough to be applied on large‐scale portfolios, solving the problem of dealing with extremely complex likelihood functions which typically arises in this context. An application of this procedure to a portfolio of five daily exchange rate series shows that the out‐of‐sample forecasts for the multivariate volatility are improved under several loss functions when the long‐range dependence property of the portfolio assets is explicitly accounted for. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
    
We examine the potential gains of using exchange rate forecast models and forecast combination methods in the management of currency portfolios for three exchange rates: the euro versus the US dollar, the British pound, and the Japanese yen. We use a battery of econometric specifications to evaluate whether optimal currency portfolios implied by trading strategies based on exchange rate forecasts outperform single currencies and the equally weighted portfolio. We assess the differences in profitability of optimal currency portfolios for different types of investor preferences, two trading strategies, mean squared error‐based composite forecasts, and different forecast horizons. Our results indicate that there are clear benefits of integrating exchange rate forecasts from state‐of‐the‐art econometric models in currency portfolios. These benefits vary across investor preferences and prediction horizons but are rather similar across trading strategies.  相似文献   

10.
    
This paper investigates robust model rankings in out‐of‐sample, short‐horizon forecasting. We provide strong evidence that rolling window averaging consistently produces robust model rankings while improving the forecasting performance of both individual models and model averaging. The rolling window averaging outperforms the (ex post) “optimal” window forecasts in more than 50% of the times across all rolling windows.  相似文献   

11.
    
This study investigates the impact of 70 US and EU macroeconomic news announcements on euro/dollar returns and volatility from November 2004 to April 2014. We use regime smooth transition regression to endogenously define recession and expansion. Our sample period includes the US mortgage crisis and EU sovereign debt crisis. Most news is unstable as its effect varies between these economic states. There are asymmetrical effects between recession and expansion states for both US and EU news, with most US news having a larger impact and nearly double the number of significant EU announcements. Volatility increases for over 85% of news coefficients, with more than half still being significantly different between states.  相似文献   

12.
    
A common explanation for the inability of the monetary model to beat the random walk in forecasting future exchange rates is that conventional time series tests may have low power, and that panel data should generate more powerful tests. This paper provides an extensive evaluation of this power argument to the use of panel data in the forecasting context. In particular, by using simulations it is shown that although pooling of the individual prediction tests can lead to substantial power gains, pooling only the parameters of the forecasting equation, as has been suggested in the previous literature, does not seem to generate more powerful tests. The simulation results are illustrated through an empirical application. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
    
We provide a comprehensive study of out‐of‐sample forecasts for the EUR/USD exchange rate based on multivariate macroeconomic models and forecast combinations. We use profit maximization measures based on directional accuracy and trading strategies in addition to standard loss minimization measures. When comparing predictive accuracy and profit measures, data snooping bias free tests are used. The results indicate that forecast combinations, in particular those based on principal components of forecasts, help to improve over benchmark trading strategies, although the excess return per unit of deviation is limited. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper addresses the issues of maximum likelihood estimation and forecasting of a long-memory time series with missing values. A state-space representation of the underlying long-memory process is proposed. By incorporating this representation with the Kalman filter, the proposed method allows not only for an efficient estimation of an ARFIMA model but also for the estimation of future values under the presence of missing data. This procedure is illustrated through an analysis of a foreign exchange data set. An investment scheme is developed which demonstrates the usefulness of the proposed approach. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
    
Exchange rate modeling has always fascinated researchers because of its complex macroeconomic dynamics. This study documents the exchange rate dynamics of major emerging economies after accounting for their macroeconomic cycles and explores the Bayesian Vector Error Correction Model (VECM) Markov Regime switching model, which uses time-varying transition probabilities. The main objective is to study the exchange rate dynamics of Brazil, Russia, India, China, and South Africa (BRICS) vis-à-vis the US dollar. The Bayesian setup uses two hierarchal shrinkage priors, the normal-gamma (NG) prior and the Litterman prior, for parameters' estimation. These shrinkage priors allow for a more comprehensive assessment of the regime-specific coefficients. The model performed well in differentiating between the two regimes for all currencies. The Russian ruble was identified to be the most depreciated currency, whereas the African Rand was the most appreciated. The evaluation of model features revealed that many regime-specific coefficients differed significantly from their common mean. A forecasting exercise was then performed for the out-of-sample period to assess the model's performance. A significant improvement was observed over the basic random walk (RW) model and the linear Bayesian vector autoregression (BVAR) model.  相似文献   

16.
    
This paper proposes to forecast foreign exchange rates by means of an error components‐seemingly unrelated nonlinear regression (EC‐SUNR) model and, simultaneously, explore the interrelationships among currencies from newly industrializing economies with those of highly industrialized countries. Based on the empirical results, we find that the EC‐SUNR model improves on the performance of forecasting foreign exchange rates in comparison with an intrinsically nonlinear dynamic speed of adjustment model that has been shown to outperform several other important models in the forecasting literature. We also find evidence showing that the foreign exchange markets of the newly industrializing countries are influenced by those of the highly industrialized countries and vice versa, and that such interrelationships affect the accuracy of currency forecasting. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we use Google Trends data for exchange rate forecasting in the context of a broad literature review that ties the exchange rate movements with macroeconomic fundamentals. The sample covers 11 OECD countries’ exchange rates for the period from January 2004 to June 2014. In out‐of‐sample forecasting of monthly returns on exchange rates, our findings indicate that the Google Trends search query data do a better job than the structural models in predicting the true direction of changes in nominal exchange rates. We also observed that Google Trends‐based forecasts are better at picking up the direction of the changes in the monthly nominal exchange rates after the Great Recession era (2008–2009). Based on the Clark and West inference procedure of equal predictive accuracy testing, we found that the relative performance of Google Trends‐based exchange rate predictions against the null of a random walk model is no worse than the purchasing power parity model. On the other hand, although the monetary model fundamentals could beat the random walk null only in one out of 11 currency pairs, with Google Trends predictors we found evidence of better performance for five currency pairs. We believe that these findings necessitate further research in this area to investigate the extravalue one can get from Google search query data.  相似文献   

18.
    
A model previously developed by Lackman (C. L. Lackman, Forecasting commercial paper rates. Journal of Business Finance and Accounting 15 (1988) 499–524) for the period 1960 to 1985 is updated to include the 1990s and incorporate statistical techniques relating to tests for stationary conditions not available in 1988. As in the previous model, the demand for commercial paper by each institution (Households (HH), Life Insurance Companies (LIC), Non‐Financial Corporations (CRP) and Finance Corporations (FC)) and the total demand is simulated. Simulations of the commercial paper rate are also generated—using just the demand equations (total supply exogenous) and then employing the entire model (supply endogenous) to determine the rate. Simulation periods are from 1960:2 to 2001:4 for all demand simulations. The dynamic simulation of the total demand for commercial paper performs well. The resulting root mean square error, 3.485, compares favourably with the Federal Reserve Boston–Massachusetts Institute of Technology (FRB–MIT) estimate of the commercial paper rate (deLeeuw and Granlich, 1968). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This paper compares the out-of-sample forecasting accuracy of a wide class of structural, BVAR and VAR models for major sterling exchange rates over different forecast horizons. As representative structural models we employ a portfolio balance model and a modified uncovered interest parity model, with the latter producing the more accurate forecasts. Proper attention to the long-run properties and the short-run dynamics of structural models can improve on the forecasting performance of the random walk model. The structural model shows substantial improvement in medium-term forecasting accuracy, whereas the BVAR model is the more accurate in the short term. BVAR and VAR models in levels strongly out predict these models formulated in difference form at all forecast horizons.  相似文献   

20.
    
Fractionally integrated models with the disturbances following a Bloomfield ( 1973 ) exponential spectral model are proposed in this article for modelling UK unemployment. This gives us a better understanding of the low‐frequency dynamics affecting the series without relying on any particular ARMA specification for its short‐run components which, in general, require many more parameters to estimate. The results indicate that this exponential model, confounded with fractional integration, may be a feasible way of modelling unemployment. It also shows that its order of integration is much higher than one and thus leads to the conclusion that the standard practice of taking first differences may lead to erroneous results. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号