共查询到20条相似文献,搜索用时 0 毫秒
1.
Recent studies suggest realized volatility provides forecasts that are as good as option‐implied volatilities, with improvement stemming from the use of high‐frequency data instead of a long‐memory specification. This paper examines whether volatility persistence can be captured by a longer dataset consisting of over 15 years of intra‐day data. Volatility forecasts are evaluated using four exchange rates (AUD/USD, EUR/USD, GBP/USD, USD/JPY) over horizons ranging from 1 day to 3 months, using an expanded set of short‐range and long‐range dependence models. The empirical results provide additional evidence that significant incremental information is found in historical forecasts, beyond the implied volatility information for all forecast horizons. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
2.
For leverage heterogeneous autoregressive (LHAR) models with jumps and other covariates, called LHARX models, multistep forecasts are derived. Some optimal properties of forecasts in terms of conditional volatilities are discussed, which tells us to model conditional volatility for return but not for the LHARX regression error and other covariates. Forecast standard errors are constructed for which we need to model conditional volatilities both for return and for LHAR regression error and other blue covariates. The proposed methods are well illustrated by forecast analysis for the realized volatilities of the US stock price indexes: the S&P 500, the NASDAQ, the DJIA, and the RUSSELL indexes. 相似文献
3.
Nima Nonejad 《Journal of forecasting》2020,39(7):1119-1141
We investigate whether crude oil price volatility is predictable by conditioning on macroeconomic variables. We consider a large number of predictors, take into account the possibility that relative predictive performance varies over the out-of-sample period, and shed light on the economic drivers of crude oil price volatility. Results using monthly data from 1983:M1 to 2018:M12 document that variables related to crude oil production, economic uncertainty and variables that either describe the current stance or provide information about the future state of the economy forecast crude oil price volatility at the population level 1 month ahead. On the other hand, evidence of finite-sample predictability is very weak. A detailed examination of our out-of-sample results using the fluctuation test suggests that this is because relative predictive performance changes drastically over the out-of-sample period. The predictive power associated with the more successful macroeconomic variables concentrates around the Great Recession until 2015. They also generate the strongest signal of a decrease in the price of crude oil towards the end of 2008. 相似文献
4.
This paper considers how information from the implied volatility (IV) term structure can be harnessed to improve stock return volatility forecasting within the state-of-the-art HAR model. Factors are extracted from the IV term structure and included as exogenous variables in the HAR framework. We found that including slope and curvature factors leads to significant forecast improvements over the HAR benchmark at a range of forecast horizons, compared with the standard HAR model and HAR model with VIX as IV information set. 相似文献
5.
In a conditional predictive ability test framework, we investigate whether market factors influence the relative conditional predictive ability of realized measures (RMs) and implied volatility (IV), which is able to examine the asynchronism in their forecasting accuracy, and further analyze their unconditional forecasting performance for volatility forecast. Our results show that the asynchronism can be detected significantly and is strongly related to certain market factors, and the comparison between RMs and IV on average forecast performance is more efficient than previous studies. Finally, we use the factors to extend the empirical similarity (ES) approach for combination of forecasts derived from RMs and IV. 相似文献
6.
In this paper, we introduce the functional coefficient to heterogeneous autoregressive realized volatility (HAR‐RV) models to make the parameters change over time. A nonparametric statistic is developed to perform a specification test. The simulation results show that our test displays reliable size and good power. Using the proposed test, we find a significant time variation property of coefficients to the HAR‐RV models. Time‐varying parameter (TVP) models can significantly outperform their constant‐coefficient counterparts for longer forecasting horizons. The predictive ability of TVP models can be improved by accounting for VIX information. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
7.
This paper compares the information content of realized measures constructed from high‐frequency data and implied volatilities from options in the context of forecasting volatility. The comparison is based on within‐sample and out‐of‐sample (over horizons of 1–22 days) forecasts of daily S&P 500 index return volatility. The paper adds to the findings of previous studies, by considering recent developments in the related practice and the literature. It is shown that, for within‐sample fitting, the realized measure is more informative than the implied volatility. In contrast, the implied volatility is more informative than the realized measure for out‐of‐sample forecasting, in particular for multi‐step‐ahead forecasting. Moreover, we show that it is helpful to use all the information provided by the realized measure and the implied volatility for the within‐sample fitting. For multi‐step‐ahead forecasting, however, it is better to use only the implied volatility. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
8.
We observe that daily highs and lows of stock prices do not diverge over time and, hence, adopt the cointegration concept and the related vector error correction model (VECM) to model the daily high, the daily low, and the associated daily range data. The in‐sample results attest to the importance of incorporating high–low interactions in modeling the range variable. In evaluating the out‐of‐sample forecast performance using both mean‐squared forecast error and direction of change criteria, it is found that the VECM‐based low and high forecasts offer some advantages over alternative forecasts. The VECM‐based range forecasts, on the other hand, do not always dominate—the forecast rankings depend on the choice of evaluation criterion and the variables being forecast. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
9.
Samuel Y.M. Ze‐To 《Journal of forecasting》2015,34(5):379-390
I examine the information content of option‐implied covariance between jumps and diffusive risk in the cross‐sectional variation in future returns. This paper documents that the difference between realized volatility and implied covariance (RV‐ICov) can predict future returns. The results show a significant and negative association of expected return and realized volatility–implied covariance spread in both the portfolio level analysis and cross‐sectional regression study. A trading strategy of buying a portfolio with the lowest RV‐ICov quintile portfolio and selling with the highest one generates positive and significant returns. This RV‐Cov anomaly is robust to controlling for size, book‐to‐market value, liquidity and systematic risk proportion. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
10.
Anders Wilhelmsson 《Journal of forecasting》2006,25(8):561-578
This paper investigates the forecasting performance of the Garch (1, 1) model when estimated with NINE different error distributions on Standard and Poor's 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of volatility from intra‐day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
11.
To forecast realized volatility, this paper introduces a multiplicative error model that incorporates heterogeneous components: weekly and monthly realized volatility measures. While the model captures the long‐memory property, estimation simply proceeds using quasi‐maximum likelihood estimation. This paper investigates its forecasting ability using the realized kernels of 34 different assets provided by the Oxford‐Man Institute's Realized Library. The model outperforms benchmark models such as ARFIMA, HAR, Log‐HAR and HEAVY‐RM in within‐sample fitting and out‐of‐sample (1‐, 10‐ and 22‐step) forecasts. It performed best in both pointwise and cumulative comparisons of multi‐step‐ahead forecasts, regardless of loss function (QLIKE or MSE). Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
12.
This paper examines the long‐run relationship between implied and realised volatility for a sample of 16 FTSE‐100 stocks. We find strong evidence of long‐memory, fractional integration in equity volatility and show that this long‐memory characteristic is not an outcome of structural breaks experienced during the sample period. Fractional cointegration between the implied and realised volatility is shown using recently developed rank cointegration tests by Robinson and Yajima (2002). The predictive ability of individual equity options is also examined and composite implied volatility estimates are shown to contain information on future idiosyncratic or stock‐specific risk that is not captured using popular statistical approaches. Implied volatilities on individual UK equities are thus closely related to realised volatility and are an effective forecasting method particularly over medium forecasting horizons. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
Recent multivariate extensions of the popular heterogeneous autoregressive model (HAR) for realized volatility leave substantial information unmodelled in residuals. We propose to employ a system of seemingly unrelated regressions to model and forecast a realized covariance matrix to capture this information. We find that the newly proposed generalized heterogeneous autoregressive (GHAR) model outperforms competing approaches in terms of economic gains, providing better mean–variance trade‐off, while, in terms of statistical precision, GHAR is not substantially dominated by any other model. Our results provide a comprehensive comparison of the performance when realized covariance, subsampled realized covariance and multivariate realized kernel estimators are used. We study the contribution of the estimators across different sampling frequencies, and show that the multivariate realized kernel and subsampled realized covariance estimators deliver further gains compared to realized covariance estimated on a 5‐minute frequency. In order to show economic and statistical gains, a portfolio of various sizes is used. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
14.
We investigate the dynamic properties of the realized volatility of five agricultural commodity futures by employing the high‐frequency data from Chinese markets and find that the realized volatility exhibits both long memory and regime switching. To capture these properties simultaneously, we utilize a Markov switching autoregressive fractionally integrated moving average (MS‐ARFIMA) model to forecast the realized volatility by combining the long memory process with regime switching component, and compare its forecast performances with the competing models at various horizons. The full‐sample estimation results show that the dynamics of the realized volatility of agricultural commodity futures are characterized by two levels of long memory: one associated with the low‐volatility regime and the other with the high‐volatility regime, and the probability to stay in the low‐volatility regime is higher than that in the high‐volatility regime. The out‐of‐sample volatility forecast results show that the combination of long memory with switching regimes improves the performance of realized volatility forecast, and the proposed model represents a superior out‐of‐sample realized volatility forecast to the competing models. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
15.
In this paper we compare several multi‐period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out‐of‐sample volatility forecasting accuracy. We also consider combinations of the models' forecasts. Using intra‐daily returns of the BOVESPA index, we calculate volatility measures such as realized variance, realized power variation and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e. realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e. MIDAS, HAR and forecast combinations) are statistically equivalent. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
16.
In multivariate volatility prediction, identifying the optimal forecasting model is not always a feasible task. This is mainly due to the curse of dimensionality typically affecting multivariate volatility models. In practice only a subset of the potentially available models can be effectively estimated, after imposing severe constraints on the dynamic structure of the volatility process. It follows that in most applications the working forecasting model can be severely misspecified. This situation leaves scope for the application of forecast combination strategies as a tool for improving the predictive accuracy. The aim of the paper is to propose some alternative combination strategies and compare their performances in forecasting high‐dimensional multivariate conditional covariance matrices for a portfolio of US stock returns. In particular, we will consider the combination of volatility predictions generated by multivariate GARCH models, based on daily returns, and dynamic models for realized covariance matrices, built from intra‐daily returns. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
This paper uses high‐frequency continuous intraday electricity price data from the EPEX market to estimate and forecast realized volatility. Three different jump tests are used to break down the variation into jump and continuous components using quadratic variation theory. Several heterogeneous autoregressive models are then estimated for the logarithmic and standard deviation transformations. Generalized autoregressive conditional heteroskedasticity (GARCH) structures are included in the error terms of the models when evidence of conditional heteroskedasticity is found. Model selection is based on various out‐of‐sample criteria. Results show that decomposition of realized volatility is important for forecasting and that the decision whether to include GARCH‐type innovations might depend on the transformation selected. Finally, results are sensitive to the jump test used in the case of the standard deviation transformation. 相似文献
18.
We investigate the realized volatility forecast of stock indices under the structural breaks. We utilize a pure multiple mean break model to identify the possibility of structural breaks in the daily realized volatility series by employing the intraday high‐frequency data of the Shanghai Stock Exchange Composite Index and the five sectoral stock indices in Chinese stock markets for the period 4 January 2000 to 30 December 2011. We then conduct both in‐sample tests and out‐of‐sample forecasts to examine the effects of structural breaks on the performance of ARFIMAX‐FIGARCH models for the realized volatility forecast by utilizing a variety of estimation window sizes designed to accommodate potential structural breaks. The results of the in‐sample tests show that there are multiple breaks in all realized volatility series. The results of the out‐of‐sample point forecasts indicate that the combination forecasts with time‐varying weights across individual forecast models estimated with different estimation windows perform well. In particular, nonlinear combination forecasts with the weights chosen based on a non‐parametric kernel regression and linear combination forecasts with the weights chosen based on the non‐negative restricted least squares and Schwarz information criterion appear to be the most accurate methods in point forecasting for realized volatility under structural breaks. We also conduct an interval forecast of the realized volatility for the combination approaches, and find that the interval forecast for nonlinear combination approaches with the weights chosen according to a non‐parametric kernel regression performs best among the competing models. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
19.
The ability to improve out-of-sample forecasting performance by combining forecasts is well established in the literature. This paper advances this literature in the area of multivariate volatility forecasts by developing two combination weighting schemes that exploit volatility persistence to emphasise certain losses within the combination estimation period. A comprehensive empirical analysis of the out-of-sample forecast performance across varying dimensions, loss functions, sub-samples and forecast horizons show that new approaches significantly outperform their counterparts in terms of statistical accuracy. Within the financial applications considered, significant benefits from combination forecasts relative to the individual candidate models are observed. Although the more sophisticated combination approaches consistently rank higher relative to the equally weighted approach, their performance is statistically indistinguishable given the relatively low power of these loss functions. Finally, within the applications, further analysis highlights how combination forecasts dramatically reduce the variability in the parameter of interest, namely the portfolio weight or beta. 相似文献
20.
This paper examines the information content of implied volatility for crude oil options as it relates to future realized volatility. Using data for the period 1996 to 2011 we find that implied volatility is an effective predictor of the month‐ahead realized volatility. We show that implied volatility subsumes the information content of contemporaneous volatility, and it contains incremental information on future volatility after controlling for contemporaneous volatility. Furthermore, incorporating risk‐neutral skewness, and especially kurtosis, improves the forecasting of realized volatility. Overall, the association between implied volatility and month‐ahead realized volatility is consistent with evidence documented for other asset classes, leading us to conclude that implied volatility serves as a reasonable proxy for expected volatility. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献