首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
奥氏体区形变使钢的连续冷却转变曲线向左上方移动;形变促进先共析铁素体转变,使先共析铁素体数量增加;形变还诱发珠光体转变。岛状组织转变动力学曲线形状与岛状组织的基体铁素体类型有关。  相似文献   

2.
含铌微合金低碳钢的连续冷却过程的相变   总被引:5,自引:0,他引:5  
用Gleeble-1500热力模拟实验机研究了含铌微合金低碳钢在不同变形条件下连续冷却过程的相变规律,利用热膨胀法结合金相法建立了静态和动态的连续冷却转变曲线,分析了变形参数对组织的影响规律.研究表明,高温变形促进了珠光体相变,在950℃以上,变形温度的升高导致铁素体转变区减少;从贝氏体转变开始温度看,950℃变形促进了贝氏体相变;在相同变形温度下,随着变形量的增加,先共析铁素体的量增多,贝氏体量减少;在900℃以下变形促进了高温等轴铁素体的形成,抑制了贝氏体的相变.  相似文献   

3.
试验研究了一种Cr-Mn-Mo-B低碳低合金高强钢奥氏作热变形温度对相变前奥氏体组织状态及对先共析铁素体等温转变动力学的影响,结果表明,随着奥氏体热变形温度的降低,相变前奥氏体晶粒减小,并且先共析铁素体等温转变孕育期缩短,先共析铁素体转变量增多.  相似文献   

4.
热变形奥氏体先共析铁素体的热力学计算   总被引:1,自引:0,他引:1  
用超组元模型为热力学基础,计算了35CrMo结构钢合金形奥氏体→铁素体转变的亚稳碳摩尔分数xC^α/γ和xC^γ/α以及先共析铁素体析出驱动力△Gγ→α γ′,并讨论了不同的形变温度和形变速率对亚稳碳浓度和先共析铁素体析出驱动力的影响.未变形钢的先共析铁素体热力学平衡温度Ae3的计算值与实测值基本符合.分析了γ相热变形对Ae3的影响.  相似文献   

5.
用超组元模型为热力学基础,计算了35CrMo结构钢合金形奥氏体→铁素体转变的亚稳碳摩尔分数x_C~(α/γ)和x_C~(γ/α)以及先共析铁素体析出驱动力△G~(γ→α γ′),并讨论了不同的形变温度和形变速率对亚稳碳浓度和先共析铁素体析出驱动力的影响.未变形钢的先共析铁素体热力学平衡温度A_(e3)的计算值与实测值基本符合.分析了γ相热变形对A_(e3)的影响。  相似文献   

6.
用膨胀法及金相法研究了20Mn2SiMoV钢经780℃界间退火后奥氏体在600-650℃以及320-450℃温度区间的等温转变动力学。结果表明,经780℃不完全奥氏体化,过冷奥氏体的稳定性增强,奥氏体分解的高温转变和中温转变孕育期与完成时间都延长,而且高温转变区和中温转变区明显分开,贝氏体区奥氏体转变具有不完全性。临界间退火后过冷奥氏体的高温转变产物为铁素体与珠光体,中温转变产物为铁素体、贝氏体、马氏体和残余奥氏体的混合组织。  相似文献   

7.
利用计算机模拟的方法,实现了球墨铸铁共析转变组织形成的动态模拟,用填充法形成球墨,用Monte Carlo法模拟铁素体的形成和篚。用覆盖法实现共析组织转变过程的动态模拟,并在给定的组织参数条件下显示出常温组织,为球铁显微组织的形成和热处理提供了控制依据。  相似文献   

8.
在扫描电镜下原位观察了两种钢的拉伸变形过程,两种钢分别为以铁素体为主、含少量珠光体的纯净高强钢和以珠光体为主、含少量先共析铁素体的车轮钢.纯净钢拉伸时,不论试样厚度满足平面应变与否,均以铁素体的滑移变形为主,并最终导致韧性开裂,裂纹连续扩展,少量的珠光体对整个变形断裂过程几乎没有影响;断口呈现韧窝状.对于车轮钢,当试样厚度很薄不满足平面应变条件时,尽管先共析铁素体很少,拉伸时,仍以先共析铁素体的变形为先导过程,并在先共析铁素体与珠光体的界面处优先开裂,成为不连续微裂纹,断口呈现韧窝和准解理两种混合特征;当试样厚度满足平面应变条件时,则以珠光体中渗碳体片层的脆性开裂为主,断口呈现准解理特征.  相似文献   

9.
在固定除淬火加热温度以外其它各热处理工艺参数的条件下,通过对40Cr钢不同温度亚温淬火的强度、硬度和冲击韧性的研究,确定了40Cr钢在先共析铁素体向奥氏体转变终了温度以下10℃范围内进行亚温淬火,其强度和韧性达到了最佳配合。通过亚温淬火与生产中常用的完全淬火强韧化效果比较,得出40Cr钢亚温淬火后强韧性不低于完全淬火,且在满足使用性能要求的前提下显著降低了淬火加热温度,减少了能源消耗。  相似文献   

10.
通过对现场轧制工艺的模拟,借助热加工模拟试验机研究了变形量。变形温度及变形后的冷却速度,对一般强度船板钢变形奥氏体向铁素体和珠光体转变的影响。实验结果表明:增加变形量,降低变形温度,减缓冷却速度可在不同程度上促进奥氏体向铁素体和珠光体的转变。  相似文献   

11.
针对目前高碳高硅低温贝氏体(纳米结构贝氏体)相变速度缓慢的现状,采用贝氏体相变热力学理论分析主要合金元素对低温贝氏体相变驱动力的影响,设计了新型纳米结构贝氏体钢成分0.83C-2.44Si-0.43Mn-0.73Al.利用膨胀仪研究该成分贝氏体钢在不同温度下的相变整体动力学,综合使用扫描电子显微镜、X射线衍射、电子背散射衍射等方法研究热处理工艺对实验钢组织和力学性能的影响.结果表明,350益等温转变贝氏体的抗拉强度为1401 MPa,延伸率为42.21%,强塑积可达59136 MPa·%,在室温拉伸过程中发生明显的相变诱导塑性效应;230益等温转变组织中贝氏体铁素体片层厚度小于100 nm,抗拉强度达2169 MPa.  相似文献   

12.
以高风温热风炉用钢的沿晶应力腐蚀开裂问题为背景,研究了Mo对低合金钢在硝酸盐溶液中的应力腐蚀行为。结果表明,低合金钢中加入合金元素将使钢中贝氏体和/或珠光体含量增大,从而提高了材料的稳定性和抗SCC耐蚀性。提出了低合金钢/硝酸盐溶液体系的“温度-钼含量-SCC图”。  相似文献   

13.
本文所探讨的预测钢的淬透性方法.综合考虑了钢中合金元素、组织因素等的影 响.从微观组织的变化过程出发,利用珠光体等温转变动力学方程和传热学数学物理 模型,借助于 TI—59型电子计算器.模拟钢的珠光体连续冷却转变过程.从而确 定了计算结构钢中理想临界直径 DI 的计算程序.并实际计算出 40 Cr钢的理想 临界直径DI.  相似文献   

14.
结合膨胀法和金相观察绘制了无Nb和添加质量分数0042%Nb的实验钢的动态CCT曲线,阐明了Nb对低碳微合金钢相变行为和相变组织的影响规律.结果表明,添加Nb可显著细化铁素体晶粒,抑制铁素体形成,促进贝氏体形成,使CCT曲线移向右下方,缩小铁素体和珠光体相变区,显著扩大贝氏体相变区.此外,添加Nb可显著增强细晶强化、析出强化和相变强化效果,使实验钢维氏硬度显著提高.  相似文献   

15.
利用Gleeble-3500热力模拟试验机在950~1200℃,应变速率为0.1~10s-1条件下进行了含稀土的23Cr型双相不锈钢的热压缩变形,获得了流变曲线,建立了热变形方程,分析了变形组织。结果表明:在流变曲线上既存在峰值应力也有稳态应力;在高温低应变速率条件下,峰值应变减小。上述变形条件下,试验钢的热变形激活能Q=436kJ/mol,表观应力指数n=3.91,热变形方程为:ε=2.41×1016[sinh(0.012σs)]3.91exp (-436000/RT)。奥氏体的动态再结晶在试验钢的动态软化机制中起主导作用且随着温度的升高和应变速率的降低越来越充分;而大应变下,铁素体的软化主要表现为较充分的动态回复。稀土元素影响了热变形时两相中Mo元素的再分配是稀土改善双相不锈钢高温塑性的重要原因之一。稀土使Mo在铁素体中浓度较低温度下降低,高温下升高;而奥氏体相中,使得Mo浓度在较低温度下升高而高温下降低。  相似文献   

16.
X12CrMoWVNbN10-1-1铁素体耐热钢中的马氏体相变过程   总被引:1,自引:0,他引:1  
通过膨胀试验研究了X12CrMoWVNbN10-1-1铁素体耐热钢在不同奥氏体化条件下的马氏体相变过程.结果表明:在温度1010~1 200℃奥氏体化15 min条件下,马氏体相变的开始温度点Ms与结束温度点Mf随着奥氏体化温度的增加而升高;在1070℃奥氏体化时,Mf随奥氏体化时间的延长而升高,而在奥氏体化时间小于3 h时,随着奥氏体化时间的增加,Ms上升,在奥氏体化时间超过3 h后,Ms稳定在460℃左右;根据膨胀曲线拟合得到在1070℃奥氏体化保温不同时间条件下的马氏体相变动力学方程.  相似文献   

17.
结合试验与热力学、动力学计算,研究了在缓慢冷却条件下Al合金化对C-Si-Cr-Mn系高碳钢珠光体转变行为的影响。结果表明,在锻造后空冷条件下,不添加Al和添加1.5%Al的试验钢室温组织均为珠光体和少量马氏体,与Al-free钢相比,添加1.5%Al的试验钢的珠光体片层间距为130 nm,细化了约20 nm,维氏硬度HV_1降低了约56。结合热力学和动力学计算结果可知,Al元素的添加可以提高试验钢的珠光体转变温度及缩短珠光体转变时间,增大了奥氏体向珠光体转变的自由能,促进珠光体形成的同时也起到细化珠光体片层间距的作用。  相似文献   

18.
CSP生产600 MPa级低碳贝氏体钢的相变   总被引:1,自引:0,他引:1  
以低碳Nb、V、Ti、Mo和Cr合金化贝氏体钢为研究对象,在Formaster-Digital膨胀仪上测定了过冷奥氏体的静态CCT曲线;在Gleeble-1500热/力模拟机上,用膨胀法测定了奥氏体的动态CCT曲线;采用扫描电镜和透射电镜分析了贝氏体钢的室温组织演变规律.结果表明:合金元素抑制奥氏体向铁素体转变,在冷却速度大于10℃.s-1的范围内,静态CCT和动态CCT的室温组织均为贝氏体,具有较高的强度;奥氏体变形促进了贝氏体转变,贝氏体转变开始温度为610~668℃,终了温度为520~551℃.  相似文献   

19.
An interaction between ferrite recrystallization and austenite transformation in low-carbon steel occurs when recrystallization is delayed until the intercritical temperature range by employing high heating rate. The kinetics of recrystallization and transformation is affected by high heating rate and such an interaction. In this study, different levels of strain are applied to low-carbon steel using a severe plastic deformation method. Then, ultra-rapid annealing is performed at different heating rates of 200–1100℃/s and peak temperatures of near critical temperature. Five regimes are proposed to investigate the effects of heating rate, strain, and temperature on the interaction between recrystallization and transformation. The microstructural evolution of severely deformed low-carbon steel after ultra-rapid annealing is investigated based on the proposed regimes. Regarding the intensity and start temperature of the interaction, different microstructures consisting of ferrite and pearlite/martensite are formed. It is found that when the interaction is strong, the microstructure is refined because of the high kinetics of transformation and recrystallization. Moreover, strain shifts an interaction zone to a relatively higher heating rate. Therefore, severely deformed steel should be heated at relatively higher heating rates for it to undergo a strong interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号