共查询到18条相似文献,搜索用时 78 毫秒
1.
一种新的CMOS带隙基准电压源设计 总被引:2,自引:0,他引:2
设计了一种新的CMOS带隙基准电压源.通过采用差异电阻间温度系数的不同进行曲率补偿,利用运算放大器进行内部负反馈,设计出结构简单、低温漂、高电源抑制比的CMOS带隙基准电压源.仿真结果表明,在VDD=2 V时,电路具有4.5×10-6V/℃的温度特性和57 dB的直流电源抑制比,整个电路消耗电源电流仅为13μA. 相似文献
2.
给出一款带曲率补偿的CMOS带隙基准源电路,该电路利用双极性晶体管电流增益β与温度的指数关系对带隙基准曲率进行补偿,以简单的电路结构获得低的温度系数.电路采用CSMC0.5μm 2P3M mixed signalCMOS工艺设计,Cadence Spectre仿真结果显示,在3.6V的电源电压、-40~85℃范围内,基准源的温度系数为5.0×10-6/℃. 相似文献
3.
4.
一种二阶补偿的CMOS带隙基准电压源 总被引:4,自引:0,他引:4
提出了一种通过沟道长度调制效应进行二阶温度曲率补偿的CMOS带隙基准电压源,并分析了这种结构实现二阶温度曲率补偿成立的条件。采用0.35 μm标准CMOS工艺库,在Cadence环境下进行仿真,在-50°~+120℃温度范围内,一阶曲率补偿的温度系数为9.5 ppm/℃,而运用二阶曲率补偿后该基准电压源具有2.7 ppm/℃的低温度系数。 相似文献
5.
为降低传统双极结型晶体管(Bipolar Junction Transistor, BJT)型带隙基准源温度系数高的问题,提出了一种带有高阶曲率补偿的带隙基准电压源,极大降低了带隙基准源的温度系数.设计基于传统BJT型带隙基准电路,采用高阶曲率补偿电路对温度系数进行优化,并采用折叠式cascode运算放大器和自偏置cascode电流镜对输入电压范围进行优化.设计的带隙基准源具有低温度系数、高电源电压抑制比、结构简单的优点,是各类片上系统的优良选择. 相似文献
6.
在传统电流求和模式带隙基准电压源的基础上进行改进,设计了一种简单的三阶曲率补偿带隙基准电压源。该基准源由启动电路、低压高增益两级运算放大器、基准核心电路和高阶曲率补偿电路组成。在低温段,通过PMOS管进行二阶补偿;在高温段,通过PTAT2电流进行三阶补偿。基于CSMC 0.35μm CMOS工艺,采用Cadence软件对设计电路进行仿真分析。结果表明,在-40~125℃温度范围内,5 V电源电压下,基准源输出电压为1.226V,输出电压变化范围为0.51mV,基准源的温度系数为2.5×10-6/℃,低频时的电源抑制比为-67 dB。 相似文献
7.
设计了一种具有新型曲率补偿的电流模式的带隙基准电压源电路,通过在高温时产生一路正温度系数的电流注入到输出端来补偿VBE的高阶负温度系数项实现曲率补偿,从而得到更低温度系数的输出电压.同时采用一种有效的启动电路保证电路上电后可正常启动.该设计基于SMIC 0.13 μm CMOS工艺,在1.2V电源电压下,输出基准电压为500 mV,在-30~130℃范围内温度系数的版图后仿真可达到3.1×10-6 V/℃,整个电路功耗为180 μW. 相似文献
8.
为提高带隙基准电压源的温度特性,采用Buck电压转移单元产生的正温度系数对VBE的负温度系数进行高阶曲率补偿.同时使用共源共栅结构(Cascode)提高电源抑制比(PSRR).电路采用0.5 μm CMOS工艺实现,在5 V电源电压下,基准输出电压为996.72 mV,温度范围在-25~125 ℃时电路的温漂系数为1.514 ppm/℃;当电源电压在2.5~5.5 V变化时,电压调整率为0.4 mV/V,PSRR达到59.35 dB. 相似文献
9.
提出了一种通过沟道长度调制效应进行二阶温度曲率补偿的CMOS带隙基准电压源,并分析了这种结构实现二阶温度曲率补偿成立的条件。采用0.35μm标准CMOS工艺库,在Cadence环境下进行仿真,在-50°~+120℃温度范围内,一阶曲率补偿的温度系数为9.5ppm/℃,而运用二阶曲率补偿后该基准电压源具有2.7ppm/℃的低温度系数。 相似文献
10.
设计了一种高阶曲率补偿的带隙电压基准.基于一阶曲率补偿的带隙电压基准,利用三极管基极发射极电压VBE与温度T的非线性关系,将温度特性为k1T k2TlnT的电压与一阶曲率补偿后的带隙电压相加.运用Cadence工具、TSMC 0.35 μm工艺和器件模型进行了仿真,工作电压为3 V,在-50~150 ℃宽温度范围内,一阶曲率补偿带隙电压基准的温度系数为 13 ppm/℃,而运用高阶曲率补偿后带隙电压基准的温度系数减少到 3.1 ppm/℃. 相似文献
11.
一种失调电压补偿电容比例型带隙基准源设计 总被引:1,自引:0,他引:1
设计了一种全新的电容比例型带隙基准源,用电容比例取代了通常的电阻比例,有效地减小了电路设计误差以及电路的功耗,理论失调电压可获补偿.电路采用Cadence Spectre软件仿真,Charter 0.35μm CMOS工艺库实现.仿真结果表明,该电路具有极低的电路功耗(8μW),其直流电源抑制比PSRR达到50 dB,温度系数为3×10-5V/℃. 相似文献
12.
一种具有温度补偿、高电源抑制比的带隙基准源 总被引:19,自引:0,他引:19
介绍了一种用于集成电路内部的带隙基准源 ,采用了 3.3V ,0 .35 μm ,N阱 ,CMOS工艺 .通过Spectres和HSpice的仿真 ,它具有 6× 10 -6K-1的温度系数和 2 .2mV/V的电源抑制比 . 相似文献
13.
14.
一种适应于低电压工作的CMOS带隙基准电压源 总被引:1,自引:0,他引:1
采用0.5μm标准的CMOS数字工艺,设计了一种适用于低电压工作的带隙基准电压源.其特点为通过部分MOS管工作在亚阈值区,可使电路使用非低压制造工艺,在1.5 V的低电源电压下工作.该电压源具有结构简单、低功耗以及电压温度稳定性好的特点.模拟结果表明,其电源抑制比可达到88 db,在-40~140℃的范围内温度系数可达到1.9×10-5/℃,电路总功耗为37.627 5 μW. 相似文献
15.
采用分段曲率补偿的新型带隙基准电压源设计 总被引:1,自引:0,他引:1
设计了一种利用MOS晶体管产生正负温度系数电流的新型带隙基准电压源,并采用分段曲率补偿技术,从而降低基准电压的温度系数,同时增加工作温度范围.该电路使用TSMC 0.6 um标准CMOS工艺进行设计,Spectre仿真结果表明,电源电压为1.5 V,温度范围为-15~95℃时,温度系数为107 ppm/℃,采用分段曲率补偿后,温度系数降为4.28 ppm/℃. 相似文献
16.
17.
为消除运算放大器失调电压对带隙电压精度的影响,采用NPN型三极管产生ΔVbe,并设计全新的反馈环路结构产生了低压带隙电压.电路采用SMIC 0.18μm CMOS工艺实现,该新型低压带隙基准源设计输出电压为0.5V,温度系数为8ppm/℃,电源抑制比达到-130dB,并成功运用于16位高速ADC芯片中. 相似文献
18.
典型的帶隙基准电压源电路是由CMOS工艺产生的具有负温度系数的寄生横向BJT的发射结电压VEB和具有正温度系数的热电压Vt 相补偿产生零温度系数的基准帶隙电压源。但是VEB与温度不是线性关系, 因此VREF需要被校正。本文介绍了一种高精度自偏置多段二次曲率补偿的CMOS帶隙基准电压源。采用0.5 m CMOS工艺、工作电压为3.3V,该芯片室温下功耗为94W。设计在0 oC—75 oC有效温度系数达到了0.7ppm/oC。 相似文献