首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
借助高温模拟氧化装置,考察了不同温度和金属催化作用对国产某型航空润滑油(X)的颜色、运动粘度和酸值的影响.利用高压差示扫描量热技术对该航空润滑油的高温氧化安定性进行了分析,得到了各油样的起始氧化温度(IOT)和氧化诱导期(OIT).结果表明:随着温度的不断升高,X的颜色从浅黄色变为黄色、棕色直至黑色;航空润滑油的OIT值能灵敏地反映油样间氧化安定性的差异;温度对X的粘度、酸值和OIT的影响相对较小,而金属催化则使其粘度大幅降低,酸值明显增大,OIT值有所降低,导致X的氧化安定性明显下降;金属铁比金属铜对X的热氧化安定性影响更大.  相似文献   

2.
采用差示扫描量热法(DSC)对聚α-烯烃润滑基础油样进行了动态和静态氧化试验,得到了油样的起始氧化温度(IOT)为221.4℃,以及油样氧化温度为180℃和200℃时的氧化诱导时间(OIT),分别为35.5min和6.3min,以此对油样的热氧化安定性能进行了评定.同时利用DSC动态以及静态氧化试验得到的IOT和OIT,并通过油样氧化动力学方程以及氧化速率与氧化诱导时间的关系,对聚α-烯烃润滑基础油样的热氧化动力学进行了分析,其氧化活化能可达到118.0kJ·mol-1左右.  相似文献   

3.
借助高温高压反应釜,模拟聚α-烯烃(PAO)航空润滑油基础油在发动机内的高温工况,对反应油样的黏度和结构组成进行测试与分析。结果表明:工作温度≤200℃,PAO的性能和黏度并没有发生较大的变化;但在300℃的极高温度时,黏度从原来的17.940 mm2/s下降到8.279 mm2/s,降幅高达53.9%;结合GC/MS分析,300℃油样中检测到分子量相对较小的正构烷烃、异构烷烃和烯烃,其相对含量高达22.11%。这些信息揭示了高温主要促使PAO发生链裂解和脱氢的热化学反应。该研究成果为PAO的热氧化安定性和衰变机理研究提供重要理论支撑。  相似文献   

4.
采用付立叶变换红外光谱仪,跟踪测定了四种汽轮机油在ASTM D943氧化评定过程中不同氧化时间点的油样。油样用四氯化碳稀释定容,液膜法测定,扫描128次,图谱进行局部放大,主要研究在1615~1800cm~(-1)(中心在1715 cm~(-1))的羰基吸收峰。用参考点法量出各油样的羰基吸光值,换算成单位浓度(1g/mL)的油样羰基吸光值,考察单位浓度油样的吸光值与氧化时间之间的关系,並与酸值与氧化时间的关系对照,发现两者同步增长,且红外测定法测定终点突变明显、精确度高、操作方便、快速、油品用量少、便于跟踪,故有可能用以代替酸值测定法对ASTM D943氧化实验进行评定。  相似文献   

5.
应用分子蒸馏法再生废润滑油,以残炭、黏度、酸值作为表征再生油品性能的指标,考察了不同工艺条件下得到的再生油品的性能;实验结果表明:随着温度升高,再生油品的残炭含量、黏度、酸值都呈现出整体上升的趋势,综合考虑应将分子蒸馏温度控制在180℃左右;随着压力升高,再生油品的残炭含量、黏度、酸值均呈现出下降的趋势,因此分子蒸馏压力应控制在50 Pa以下;当分子蒸馏温度为180℃,分子蒸馏压力为50 Pa时,得到再生油较之废润滑油原料,不仅外观上有明显变化,其残炭含量、酸值也大幅下降,再生效果显著。  相似文献   

6.
蓖麻油甲酯(FAME)是蓖麻油与甲醇通过酯交换反应生成得到,将FAME与甲酸和过氧化氢,在催化剂硫酸作用下,发生环氧化反应生成环氧脂肪酸甲酯(EFAME).研究了H_2O_2的滴加温度,反应温度,反应时间,H_2O_2/HCOOH/FAME物质的量比,催化剂用量等环氧化反应条件.对产品的碘值,环氧值,黏度(40℃),倾点,凝点和氧化稳定性进行了测定.结果表明,相比FAME,EFAME的碘值从80.1 g/(100 g)降至2.8 g/(100 g),环氧值从0.03 mol/100g增加至1.75 mol/100g,因此,EFAME的氧化稳定性显著提高,但是低温流动性变差,黏度也增加.在下列条件:H_2O_2滴加温度50℃,反应温度50℃,反应时间10 h,n(H_2O_2)∶n(HCOOH)∶n(FAME)=5∶1∶1,催化剂用量1.5 g,环氧化反应产物的氧化稳定性较好,缓和氧化后非挥发相的酸值X_1为0.7×10~(-6) mgKOH/g,缓和氧化后挥发相的酸值X_2为0.5×10~(-8) mgKOH/g,深度氧化后沉积物含量X_3为70.2%(质量分数),深度氧化后的酸值X_4为3.3×10~(-6) mgKOH/g,相应的碘值为2.8 g/(100 g),环氧值1.75 mol/(100 g).  相似文献   

7.
采用开口杯劣化法对抗燃油进行了抗氧化剂筛选试验.研究结果表明,4,4'亚甲基二(2,6-二叔丁基酚)(TKY7930)抗氧化剂分解温度高,油溶性能好,能提高抗燃油在高温运行条件下的氧化安定性,抑制油品的劣化速度,对其他性能指标无不良影响.添加时,运行油酸值越小,抗氧化效果越好.建议添加量为0.5%(质量百分比浓度).  相似文献   

8.
基于红外光谱分析含微水绝缘油氧化安定性研究   总被引:2,自引:1,他引:1  
绝缘油受到微量水分污染之后会使油液的酸值发生变化,影响油液的氧化安定性,为了保障绝缘油的安全可靠运行有必要探讨微量水分与油液酸值的内在关系。配制不同微水含量的绝缘油样,对其进行164 h热氧化实验,对每组油样在热氧化实验前后分别进行红外光谱扫描和酸值测试;并考虑热氧化实验前后油样中T501酚羟基在红外光谱3 650 cm-1波数处吸光度和有机羧酸类物质的羰基在红外光谱1 700 cm-1波数处的吸光度变化,分析油样酸值随水分含量的变化规律。建立酸值变化量与吸光度变化量之间的多元线性模型。结果表明,建立模型的拟合优度为0.979 2,残差平方和为1.1726×10-6,预测值与实测值之间的误差为-2.50%~3.77%,吻合度较好。模型能够准确地反映不同微水含量油样的酸值变化及其氧化安定性的强弱。  相似文献   

9.
CaO-Al2O3-CaF2-SiO2渣系的黏度   总被引:2,自引:0,他引:2  
采用内旋转圆柱法测量了不同组成的CaO-Al2O3-CaF2-SiO2渣系的黏度,采用XRD分析技术对高温熔炼渣的物相进行分析,并计算了各渣样的黏流活化能.结果表明:当w(CaO)/w(Al2O3)一定,配渣中SiO2质量分数低于8%时,对渣样的高温黏度并没有明显的影响,在1 490℃以上时,熔渣黏度都低于0.5Pa.s;当SiO2质量分数增加到10%,渣样的高温黏度开始显著降低,温度高于1 440℃时,黏度值低于0.2Pa.s.随着SiO2含量的增加,熔渣的碱度逐渐降低,破坏了原来熔渣的大网状结构,熔渣的黏度明显降低.渣系的黏流活化能变化趋势与渣样的黏度值变化趋势一致.  相似文献   

10.
采用润滑油高温氧化实验与GC/MS分析联用技术,模拟聚α-烯烃航空润滑基础油在高温下的氧化裂解,并检测其结构组成随反应温度、反应时间变化的关系,同时探讨时温等效效应在润滑油高温衰变的适用性.结果表明:在反应温度200~300℃、反应时间2~100h之间,时温等效效应是适用的.利用这些信息,可以通过提高试验温度在较短时间内得到润滑油在较低温度下长期工作的衰变规律,为分析航空润滑基础油的高温安定性以及主滑油性能变化以确定合理换油周期提供重要信息.  相似文献   

11.
新型高温发泡剂烷基苯烷基磺酸钠性能研究   总被引:2,自引:0,他引:2  
针对现有发泡剂无法在高温环境发挥作用的问题,合成了新型高温发泡剂12C烷基苯16C烷基磺酸钠.试验表明:烷基苯烷基磺酸钠的最佳作用质量浓度为8g/L,烷基苯烷基磺酸钠能在200~250℃维持较佳的发泡能力,并且在250℃高温高压环境48h后发泡性能未见显著降低,起始pH值对发泡剂高温性能有显著影响.耐油实验表明:该发泡剂质量分数为在20%加入原油时,由于原油沥青质、胶质的稳泡作用,发泡能力虽有下降,但泡沫稳定性大大上升.  相似文献   

12.
采用自组装的裂解精炼装置,以大豆油为原料考察了精馏反应条件对裂解产物性能的影响。结果表明,最佳反应条件为:精馏柱温度范围320~350 ℃,裂解反应釜温度480~500 ℃,大豆油滴加速度为35 g/h。通过红外光谱(FTIR)、气质联用(GC MS)和凝胶色谱(SEC)对裂解产物的分析表明,产物具有较低的平均分子质量,主要成分为烷烃、烯烃、醛、羧酸等。从化学组成及燃料性能来看,裂解产物的性质与石化柴油相近,裂解所得产物密度825 kg/m3,黏度40 mm2/s,热值42 MJ/kg,冷凝点-9 ℃,冷滤点-4 ℃,具有较好燃料性能。  相似文献   

13.
针对目前釉浆陈化过程中出现的性能不稳定问题,通过分别添加盐酸、氨水改变釉浆pH值以及改变其陈化期间温度的方法,探究了pH值及温度对釉浆稳定性的影响.研究结果表明,加入氨水至釉浆pH值为11.45时,釉浆的初始粘度由未添加氨水时的90mm2/s降至75mm2/s;陈化4d后,釉浆的粘度为68mm2/s,变化值为7mm2/s;与未添加氨水的釉浆变化值20mm2/s相比,流变稳定性提高.升高温度至40℃,釉浆流动度由室温下的12.5cm变为15.0cm,釉浆流动性得到改善;陈化4d后,釉浆流动度变为15.3cm,变化值仅为0.3cm,稳定性能也得到提高.这两种情况均有利于釉浆在陈化过程中的稳定,涂搪打板实验证明釉面质量不受影响.  相似文献   

14.
 酸化返排液与原油混合可形成稳定性强的乳状液,影响原油的脱水及原油沉降罐的安全运行.通过室内实验考察温度、破乳剂加量、pH 值及降黏剂加量对乳状液黏度和破乳效果的影响,并采用显微镜观察不同阶段乳状液微观形态变化.实验表明:酸化返排液与原油混合成的乳状液其黏度随温度升高先急剧下降,后平缓下降,在温度低于40℃时乳状液稳定性较强,温度50~60℃时,随着温度升高,乳状液脱水率上升幅度不大,综合选取破乳温度为50℃;添加破乳剂有利于降低乳状液黏度,但效果不明显,破乳剂加量越大,乳状液破乳效果越好,当破乳剂加量达到150 mg/L 后,随破乳剂用量加大,乳状液脱水率上升幅度不大,综合选取破乳剂加量为150 mg/L;调节酸化返排液pH 值至6.0~7.0 有利于乳状液破乳,pH 值越高,油水界面变得棱角分明,脱出水的原油结构更加紧密;加入降黏剂后,乳状液脱水速度明显加快.研究结论对指导油田酸化改造后,井口初期返出的乳状液实施破乳具有借鉴作用.  相似文献   

15.
利用高温反应釜与傅立叶红外光谱(FTIR)、气相色谱/质谱联用(GC/MS)技术,从分子水平分析添加有抗氧剂N-苯基-α-萘胺(T531)的聚α-烯烃(PAO)航空润滑基础油高温衰变,考察该润滑油的热安定性能.结果显示:低于200℃时,T531具有优良的抗氧化作用,能够较好地延缓基础油的高温衰变,但温度超过270℃后,T531的抗氧化性能降低,无法有效保护基础油.300℃高温产物经GC/MS分析,共检测到63种化合物,包括36种烷烃类化合物、25种烯烃类化合物、1种酮类化合物和抗氧剂T531,短链烷烃和烯烃的相对含量分别为5.835%和2.32%,是200℃高温时的20多倍,直接导致润滑油黏度的降低.在200℃高温反应油样中的T531相对含量仅为0.734%,远低于170℃和300℃反应后的2.019%和1.587%.可见,T531在200℃环境中消耗剧烈,对润滑基础油分子的抗氧化保护作用十分显著.  相似文献   

16.
以废内燃机油为原料,二乙烯三胺为脱酸剂,考察了反应时间、反应温度、搅拌速度及二乙烯三胺的用量对脱酸效果的影响。实验结果表明:随着反应时间延长和反应温度的升高,脱酸率先增大后减小;随着搅拌速度和剂油比的加强,脱酸率一直增大。结合正交实验得出的最佳工艺条件为反应时间3h、反应温度160℃、转速300r/min、剂油比(g:g)1:300,此时1#废机油的酸值可以从0.5195 mgKOH/g降到0.0293 mgKOH/g,脱酸率达94.36%。对不同的废内燃机油进行脱酸——白土精制,再生油的各项理化指标均得到很好的改善,基本接近HVI型润滑油基础油的质量标准。  相似文献   

17.
稠油催化水热裂解降黏实验研究   总被引:1,自引:0,他引:1  
采用高温高压反应釜模拟研究了稠油在开采过程中全温度段(50~300℃)条件下的催化水热裂解降黏反应,利用元素分析仪和高效液相色谱分析了稠油元素组成和族组成变化,利用旋转流变仪测试并分析了稠油黏度变化及黏温特性,初步探讨了200℃以下的稠油催化水热裂解降黏的实质.结果表明:稠油在低温条件下水热裂解反应降黏以破坏弱化学作用力为主,稠油降黏率与重质组分减少密切相关.有催化剂存在时,稠油催化裂解作用的主要温度在150~200℃,反应24 h降黏率可达到80%以上.  相似文献   

18.
对豆油进行化学改性,利用异构化反应在分子中引入支链,以提高其氧化稳定性及流变学性能;并考察改性豆油的氧化稳定性、流变学性能和摩擦学性能。实验结果表明:增加中位链长度,改性豆油的黏度、黏度指数、低温性能、抗磨损性能以及承载能力都会提高,而氧化稳定性会降低;端链的支链化会提高改性豆油的低温性能,并且随着链长的增加,其低温性能进一步提高;改性豆油中的羟基被乙酰化后其氧化稳定性会有一定程度的提高,但这会降低改性豆油的抗磨损性能和油膜承载能力。  相似文献   

19.
为了深入研究CO2对煤低温氧化反应的影响,利用程序升温油浴实验装置,研究在不同CO2浓度下煤样的自燃特性。采集南屯矿煤样,破碎并筛分出混合平均粒径为4.18 mm的煤样,向试验管煤样中通入不同配比的混合气体,实验控制升温速度为0.3℃/min,供气量为190 mL/min.测定在6种不同浓度CO2气氛下的煤样低温氧化特性,实验结果表明:CO2浓度越高,煤样耗氧速率越小,CO产生率降低。在起始阶耗氧速率相差不大,煤氧复合作用以物理吸附和化学吸附为主,后期阶段以化学反应为主,变化明显。相比于空气气氛下,CO2气氛下煤样活化能有所提高,在40~100℃的温度范围内煤氧作用的活化能值由17.85 kJ/mol升高至22.71 kJ/mol,氧化反应速率降低,表明CO2的加入降低了煤的氧化反应速率,抑制了煤的氧化反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号