首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismology: speed and size of the Sumatra earthquake   总被引:3,自引:0,他引:3  
Stein S  Okal EA 《Nature》2005,434(7033):581-582
Our seismological results reveal that Indonesia's devastating Sumatra-Andaman earthquake on 26 December 2004 was 2.5 times larger than initial reports suggested--second only to the 1960 Chilean earthquake in recorded magnitude. They indicate that it slowly released its energy by slip along a 1,200-km fault, generating a long rupture that contributed to the subsequent tsunami. Now that the entire rupture zone has slipped, the strain accumulated from the subduction of the Indian plate beneath the Burma microplate has been released, and there is no immediate danger of a similar tsunami being generated on this part of the plate boundary, although large earthquakes on segments to the south still present a threat.  相似文献   

2.
Resonant slow fault slip in subduction zones forced by climatic load stress   总被引:1,自引:0,他引:1  
Lowry AR 《Nature》2006,442(7104):802-805
Global Positioning System (GPS) measurements at subduction plate boundaries often record fault movements similar to earthquakes but much slower, occurring over timescales of approximately 1 week to approximately 1 year. These 'slow slip events' have been observed in Japan, Cascadia, Mexico, Alaska and New Zealand. The phenomenon is poorly understood, but several observations hint at the processes underlying slow slip. Although slip itself is silent, seismic instruments often record coincident low-amplitude tremor in a narrow (1-5 cycles per second) frequency range. Also, modelling of GPS data and estimates of tremor location indicate that slip focuses near the transition from unstable ('stick-slip') to stable friction at the deep limit of the earthquake-producing seismogenic zone. Perhaps most intriguingly, slow slip is periodic at several locations, with recurrence varying from 6 to 18 months depending on which subduction zone (or even segment) is examined. Here I show that such periodic slow fault slip may be a resonant response to climate-driven stress perturbations. Fault slip resonance helps to explain why slip events are periodic, why periods differ from place to place, and why slip focuses near the base of the seismogenic zone. Resonant slip should initiate within the rupture zone of future great earthquakes, suggesting that slow slip may illuminate fault properties that control earthquake slip.  相似文献   

3.
Predecessors of the giant 1960 Chile earthquake   总被引:1,自引:0,他引:1  
It is commonly thought that the longer the time since last earthquake, the larger the next earthquake's slip will be. But this logical predictor of earthquake size, unsuccessful for large earthquakes on a strike-slip fault, fails also with the giant 1960 Chile earthquake of magnitude 9.5 (ref. 3). Although the time since the preceding earthquake spanned 123 years (refs 4, 5), the estimated slip in 1960, which occurred on a fault between the Nazca and South American tectonic plates, equalled 250-350 years' worth of the plate motion. Thus the average interval between such giant earthquakes on this fault should span several centuries. Here we present evidence that such long intervals were indeed typical of the last two millennia. We use buried soils and sand layers as records of tectonic subsidence and tsunami inundation at an estuary midway along the 1960 rupture. In these records, the 1960 earthquake ended a recurrence interval that had begun almost four centuries before, with an earthquake documented by Spanish conquistadors in 1575. Two later earthquakes, in 1737 and 1837, produced little if any subsidence or tsunami at the estuary and they therefore probably left the fault partly loaded with accumulated plate motion that the 1960 earthquake then expended.  相似文献   

4.
The Sumatra-Andaman earthquake of 26 December 2004 is the first giant earthquake (moment magnitude M(w) > 9.0) to have occurred since the advent of modern space-based geodesy and broadband seismology. It therefore provides an unprecedented opportunity to investigate the characteristics of one of these enormous and rare events. Here we report estimates of the ground displacement associated with this event, using near-field Global Positioning System (GPS) surveys in northwestern Sumatra combined with in situ and remote observations of the vertical motion of coral reefs. These data show that the earthquake was generated by rupture of the Sunda subduction megathrust over a distance of >1,500 kilometres and a width of <150 kilometres. Megathrust slip exceeded 20 metres offshore northern Sumatra, mostly at depths shallower than 30 kilometres. Comparison of the geodetically and seismically inferred slip distribution indicates that approximately 30 per cent additional fault slip accrued in the 1.5 months following the 500-second-long seismic rupture. Both seismic and aseismic slip before our re-occupation of GPS sites occurred on the shallow portion of the megathrust, where the large Aceh tsunami originated. Slip tapers off abruptly along strike beneath Simeulue Island at the southeastern edge of the rupture, where the earthquake nucleated and where an M(w) = 7.2 earthquake occurred in late 2002. This edge also abuts the northern limit of slip in the 28 March 2005 M(w) = 8.7 Nias-Simeulue earthquake.  相似文献   

5.
 大地震不是任何地方都能发生的,大地震也不是任何时间都能发生的,大地震有其特定的时空结构。前期工作表明,条环交会、差异活动以及深震与“天外来客”事件等是制约发震时空窗口的主要因素。2011年3月11日发生在日本海沟俯冲带的M9.0大地震,其震前地震活动全面、清晰地展现出了其可预测性特征:(1) 1925年开始出现的板间地震长期平静区;(2) 2003年开始出现的位于平静区中部,起始于深震的海沟垂向地震活动条带;(3) 2009年3月(海沟垂向地震活动条带形成后)开始出现的广义前震发震地方时的非随机显著聚集特征;(4) 2011年3月9日(主震前2天)发生在平静区内的前震。主震发生在平静区边缘,海沟垂向地震活动条带与日本海沟板间地震带的交会处的地震活动差异性较大的地方,其断层面与海沟垂向地震活动条带内另外两个板间地震(2005-08-16地震和前震)的断层面共面。主震发生于广义前震发震地方时非随机聚集时段的中位时辰。日本大地震的可预测性特征逐一印证了我们的前期研究。  相似文献   

6.
As revealed by field investigations, the co-seismic surface rupture zone of the 2010 MS7.1 Yushu earthquake, Qinghai is a char-acteristic sinistral strike-slip feature consisting of three distinct sinistral primary ruptures, with an overall strike of 310°–320° and a total length of 31 km. In addition, an approximately 2-km-long en-echelon tensile fissure zone was found east of Longbao Town; if this site is taken as the north end of the rupture zone, then the rupture had a total length of ~51 km. The surface rupture zone is composed of a series of fissures arranged in an en-echelon or alternating relationship between compressive bulges and tensile fissures, with a measured maximum horizontal displacement of 1.8 m. The surface rupture zone extends along the mapped Garzê-Yushu Fault, which implicates it as the seismogenic fault for this earthquake. Historically, a few earthquakes with a magnitude of about 7 have occurred along the fault, and additionally traces of paleoearthquakes are evident that characterize the short-period recurrence interval of large earthquakes here. Similar to the seismogenic process of the 2008 Wenchuan earthquake, the Yushu earthquake is also due to the stress accumulation and release on the block boundaries resulting from the eastward expansion of Qinghai-Tibet Plateau. However, in contrast with the Wenchuan earthquake, the Yushu earthquake had a sinistral strike-slip mechanism resulting from the uneven eastward extrusion of the Baryan Har and Sichuan-Yunnan fault blocks.  相似文献   

7.
Gagnon K  Chadwell CD  Norabuena E 《Nature》2005,434(7030):205-208
The subduction zone off the west coast of South America marks the convergence of the oceanic Nazca plate and the continental South America plate. Nazca-South America convergence over the past 23 million years has created the 6-km-deep Peru-Chile trench, 150 km offshore. High pressure between the plates creates a locked zone, leading to deformation of the overriding plate. The surface area of this locked zone is thought to control the magnitude of co-seismic release and is limited by pressure, temperature, sediment type and fluid content. Here we present seafloor deformation data from the submerged South America plate obtained from a combination of Global Positioning System (GPS) receivers and acoustic transponders. We estimate that the measured horizontal surface motion perpendicular to the trench is consistent with a model having no slip along the thrust fault between 2 and 40 km depth. A tsunami in 1996, 200 km north of our site, was interpreted as being the result of an anomalously shallow interplate earthquake. Seismic coupling at shallow depths, such as we observe, may explain why co-seismic events in the Peruvian subduction zone create large tsunamis.  相似文献   

8.
Indonesian earthquake: earthquake risk from co-seismic stress   总被引:4,自引:0,他引:4  
McCloskey J  Nalbant SS  Steacy S 《Nature》2005,434(7031):291
Following the massive loss of life caused by the Sumatra-Andaman earthquake in Indonesia and its tsunami, the possibility of a triggered earthquake on the contiguous Sunda trench subduction zone is a real concern. We have calculated the distributions of co-seismic stress on this zone, as well as on the neighbouring, vertical strike-slip Sumatra fault, and find an increase in stress on both structures that significantly boosts the already considerable earthquake hazard posed by them. In particular, the increased potential for a large subduction-zone event in this region, with the concomitant risk of another tsunami, makes the need for a tsunami warning system in the Indian Ocean all the more urgent.  相似文献   

9.
2022年1月15日西南太平洋的洪阿哈阿帕伊岛海底火山发生了爆炸式的剧烈喷发,吸引了全球的关注。洪阿哈阿帕伊岛海底火山位于汤加-克马德克俯冲带,综合前期研究结果,对汤加-克马德克俯冲带的地质构造特征、地震和火山分布进行初步分析,发现:(1)从汤加-克马德克俯冲带弧前向海方向直到俯冲的太平洋板块,构造上主要表现为大规模正断层。(2)路易斯维尔海山链的俯冲将汤加-克马德克俯冲带分为北部的汤加俯冲带和南部的克马德克俯冲带,沿汤加俯冲带板块汇聚率为67~84 mm/a,沿克马德克俯冲带板块汇聚率为41~58 mm/a,板块俯冲速度的差异造成汤加俯冲带和克马德克俯冲带目前俯冲深度的不同。(3)在路易斯维尔海山链以北,太平洋板块上覆沉积物厚度不足0.4 km,而在南侧达到1 km左右,由于俯冲板块上覆沉积物厚度的差异而造成北部的汤加俯冲带和南部的克马德克俯冲带孕育地震能力的差异。这些认识对研究该俯冲带的火山喷发机制、大地震成因机理及其灾害风险具有重要意义。  相似文献   

10.
Ozawa S  Nishimura T  Suito H  Kobayashi T  Tobita M  Imakiire T 《Nature》2011,475(7356):373-376
Most large earthquakes occur along an oceanic trench, where an oceanic plate subducts beneath a continental plate. Massive earthquakes with a moment magnitude, M(w), of nine have been known to occur in only a few areas, including Chile, Alaska, Kamchatka and Sumatra. No historical records exist of a M(w) = 9 earthquake along the Japan trench, where the Pacific plate subducts beneath the Okhotsk plate, with the possible exception of the ad 869 Jogan earthquake, the magnitude of which has not been well constrained. However, the strain accumulation rate estimated there from recent geodetic observations is much higher than the average strain rate released in previous interplate earthquakes. This finding raises the question of how such areas release the accumulated strain. A megathrust earthquake with M(w) = 9.0 (hereafter referred to as the Tohoku-Oki earthquake) occurred on 11 March 2011, rupturing the plate boundary off the Pacific coast of northeastern Japan. Here we report the distributions of the coseismic slip and postseismic slip as determined from ground displacement detected using a network based on the Global Positioning System. The coseismic slip area extends approximately 400?km along the Japan trench, matching the area of the pre-seismic locked zone. The afterslip has begun to overlap the coseismic slip area and extends into the surrounding region. In particular, the afterslip area reached a depth of approximately 100?km, with M(w) = 8.3, on 25 March 2011. Because the Tohoku-Oki earthquake released the strain accumulated for several hundred years, the paradox of the strain budget imbalance may be partly resolved. This earthquake reminds us of the potential for M(w)?≈?9 earthquakes to occur along other trench systems, even if no past evidence of such events exists. Therefore, it is imperative that strain accumulation be monitored using a space geodetic technique to assess earthquake potential.  相似文献   

11.
Kao H  Shan SJ  Dragert H  Rogers G  Cassidy JF  Ramachandran K 《Nature》2005,436(7052):841-844
The Cascadia subduction zone is thought to be capable of generating major earthquakes with moment magnitude as large as M(w) = 9 at an interval of several hundred years. The seismogenic portion of the plate interface is mostly offshore and is currently locked, as inferred from geodetic data. However, episodic surface displacements-in the direction opposite to the long-term deformation motions caused by relative plate convergence across a locked interface-are observed about every 14 months with an unusual tremor-like seismic signature. Here we show that these tremors are distributed over a depth range exceeding 40 km within a limited horizontal band. Many occurred within or close to the strong seismic reflectors above the plate interface where local earthquakes are absent, suggesting that the seismogenic process for tremors is fluid-related. The observed depth range implies that tremors could be associated with the variation of stress field induced by a transient slip along the deeper portion of the Cascadia interface or, alternatively, that episodic slip is more diffuse than originally suggested.  相似文献   

12.
Krüger F  Ohrnberger M 《Nature》2005,435(7044):937-939
On 26 December 2004, a moment magnitude Mw = 9.3 earthquake occurred along Northern Sumatra, the Nicobar and Andaman islands, resulting in a devastating tsunami in the Indian Ocean region. The rapid and accurate estimation of the rupture length and direction of such tsunami-generating earthquakes is crucial for constraining both tsunami wave-height models as well as the seismic moment of the events. Compressional seismic waves generated at the hypocentre of the Sumatra earthquake arrived after about 12 min at the broadband seismic stations of the German Regional Seismic Network (GRSN), located approximately 9,000 km from the event. Here we present a modification of a standard array-seismological approach and show that it is possible to track the propagating rupture front of the Sumatra earthquake over a total rupture length of 1,150 km. We estimate the average rupture speed to be 2.3-2.7 km s(-1) and the total duration of rupture to be at least 430 s, and probably between 480 and 500 s.  相似文献   

13.
The Longling-Lancang fault zone, consisting of sets of en echelon or clustered faults, is a newly-generated rupture zone. It is characterized by the distribution of active faults, earthquake faults and earthquakes in zones. Formed in the Early-Middle Pleistocene, still active in the late, it moves dextrally and extensionally. It tends to cut off the locked segments and discontinuous segments at first, then pervades totally along the zone, accompanied by strong earthquakes.  相似文献   

14.
The Longling-Lancang fault zone, consisting of sets of en echelon or clustered faults, is a newly-generated rupture zone. It is characterized by the distribution of active faults, earthquake faults and earthquakes in zones. Formed in the Early-Middle Pleistocene, still active in the late, it moves dextrally and extensionally. It tends to cut off the locked segments and discontinuous segments at first, then pervades totally along the zone, accompanied by strong earthquakes.  相似文献   

15.
基于孕震断层多锁固段脆性破裂理论和新划定的3.6版汶川地震区,再次探讨了与2008年汶川地震有关的若干科学问题,包括该震是否为主震?该震、2013年芦山MS7.0地震、2017年九寨沟M_S7.0地震之间关系?该震是否存在复发周期?该震发生前是否存在显著物理前兆?该震与紫坪铺水库之间关系?研究结果表明:汶川地震并非汶川地震区当前地震周期主震,未来将发生MS8.0~8.3标志性地震;2013年芦山地震和2017年九寨沟地震有直接联系且均与汶川地震密切相关,两者同为下一次标志性地震前的两次显著预震;汶川地震区标志性地震及其未来主震是否存在复发周期目前尚不能作出明确判断;在汶川地震前,由于自1995年12月18日后其震源体的物理状态长期保持近似不变,故不可能观测到显著的中长期与短临物理前兆;紫坪铺水库对汶川地震孕育过程的影响很小,可以忽略。  相似文献   

16.
17.
2010年2月27日南美洲智利中部近岸发生强震并引发海啸.利用海啸期间台湾周边海域验潮站的潮位资料,分析了此次海啸对台湾周边海域的影响,海啸波通过太平洋于震后25.5h到达台湾周边海域,最大波高达44 cm.进而从理论上讨论了海啸传播时间和波高变化的简单计算方法,并引入了波高衰减因子.结果表明,该简单计算方法能快速且较准确地计算出海啸波的传播时间,引入的波高衰减因子,可在一定程度上为台湾周边海域海啸的方便快捷的预警提供参考.  相似文献   

18.
In the last decade and a half, a number of earthquakes of magnitude 4–5 have occurred in the Beijing-Tianjin-Tangshan-Zhangjiakou (BTTZ) region. On the basis of the analysis of the temporally continuous gravity variation data principally from the Baijiatuan (BJTN) semi-permanent gravity base station, a general picture of gravity variation related to the seismogenesis and occurrence of earthquakes has emerged. As gravity variation is generally observed on the earth’s surface, the predominant influence is that of the near-surface groundwater. The subsurface fluids are distributed throughout all depths in the crust and respond to the seismogenic processes of earthquakes as well. The influence of the subsurface fluid on gravity variation is, therefore, of equal importance. The fluids, which include the near-surface groundwater and the subsurface fluids distributed throughout all depths in the crust, play a more important role in the gravity variations in terms of the seismogenesis and occurrence of earthquakes than previously realized. The abundance of accumulated data shows that the dilatancy instability (IPE) model seems not applicable at least to the seismogenesis and occurrence of earthquakes in the BTTZ region. In order to reflect the physical reality, the earlier proposed combined dilatancy model requires modification. The seismogenic area in the BTTZ region may be modelled as a large pre-stressed volume of a fluid-filled poroelastic medium, including not only the pre-stressed volume surrounding the impending rupture zone but also the volume containing the rupture of the fault zone itself. The pre-stressed volume outside the impending rupture zone is under a state of relatively small change of the pre-existing regional tectonic stress, while the volume containing the impending rupture zone is an induced region of very high local stress concentration, and/or pore over-pressure. The calculated gravity variations based on the modified combined dilatancy model (MCDM) with the known physical parameters of the region resemble the observed residual gravity variations. Apparently the residual gravity variations, in addition to responding to the deep-seated seismogenesis and occurrence of earthquakes, predominantly respond to the near-surface groundwater, and the subsurface fluids, which themselves also respond to the seismogenesis and occurrence of earthquakes. On the basis of comparison between the calculated MCDM gravity variations and the observed residual gravity variations, the change of the regional tectonic stress field for the earthquakes of magnitude 4–5 in the BTTZ region could be approximately estimated to be in the neighbourhood of 5%–7%. It is apparent that simultaneously monitoring the temporally continuous variations of the near-surface groundwater, subsurface fluids, and gravity coupled with modelling would provide vital information on the history and evolution of the seismogenic processes about 10 months to 1 year prior to the occurrence of an earthquake of magnitude 4–5 and tens of years prior to that of an earthquake of magnitude 7–8 such as the Haicheng earthquake in 1975 and the Tangshan earthquake in 1976 in the BTTZ region. These earthquakes of magnitude 4–5, which so far have occurred in the BTTZ region, may well be the precursory events to a larger earthquake. L-DEO, Columbia University, Contribution No. 5613.  相似文献   

19.
Fialko Y  Sandwell D  Simons M  Rosen P 《Nature》2005,435(7040):295-299
Our understanding of the earthquake process requires detailed insights into how the tectonic stresses are accumulated and released on seismogenic faults. We derive the full vector displacement field due to the Bam, Iran, earthquake of moment magnitude 6.5 using radar data from the Envisat satellite of the European Space Agency. Analysis of surface deformation indicates that most of the seismic moment release along the 20-km-long strike-slip rupture occurred at a shallow depth of 4-5 km, yet the rupture did not break the surface. The Bam event may therefore represent an end-member case of the 'shallow slip deficit' model, which postulates that coseismic slip in the uppermost crust is systematically less than that at seismogenic depths (4-10 km). The InSAR-derived surface displacement data from the Bam and other large shallow earthquakes suggest that the uppermost section of the seismogenic crust around young and developing faults may undergo a distributed failure in the interseismic period, thereby accumulating little elastic strain.  相似文献   

20.
Shelly DR  Beroza GC  Ide S  Nakamula S 《Nature》2006,442(7099):188-191
Non-volcanic seismic tremor was discovered in the Nankai trough subduction zone in southwest Japan and subsequently identified in the Cascadia subduction zone. In both locations, tremor is observed to coincide temporally with large, slow slip events on the plate interface downdip of the seismogenic zone. The relationship between tremor and aseismic slip remains uncertain, however, largely owing to difficulty in constraining the source depth of tremor. In southwest Japan, a high quality borehole seismic network allows identification of coherent S-wave (and sometimes P-wave) arrivals within the tremor, whose sources are classified as low-frequency earthquakes. As low-frequency earthquakes comprise at least a portion of tremor, understanding their mechanism is critical to understanding tremor as a whole. Here, we provide strong evidence that these earthquakes occur on the plate interface, coincident with the inferred zone of slow slip. The locations and characteristics of these events suggest that they are generated by shear slip during otherwise aseismic transients, rather than by fluid flow. High pore-fluid pressure in the immediate vicinity, as implied by our estimates of seismic P- and S-wave speeds, may act to promote this transient mode of failure. Low-frequency earthquakes could potentially contribute to seismic hazard forecasting by providing a new means to monitor slow slip at depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号