首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The thymus is central to the establishment of a functioning immune system. Here is the place where T cells mature from hematopoietic progenitors, driven by mutual interactions of stromal cells and the developing thymocytes. As a result, different types of T cells are generated, all of which have been carefully selected for the ability to act in host defense towards non-self and against the potential to mount pathogenic self-reactive autoimmune responses. In this review we summarize our present knowlege on the lineage decisions taking place during this development, the selection processes responsible for shaping the T cell antigen-receptor repertoire, the interactions with the stromal components and the signal transduction pathways which transform the interactions with the thymic microenvironment into cellular responses of survival, proliferation, differentiation and, importantly, also of cell death. Received 12 June 2003; received after revision 22 July 2003; accepted 28 July 2003  相似文献   

3.
Molecular basis of autosomal-dominant polycystic kidney disease   总被引:5,自引:0,他引:5  
Autosomal-dominant polycystic kidney disease (ADPKD) is one of the most common monogenetic diseases in humans. The discovery that mutations in the PKD1 and PKD2 genes are responsible for ADPKD has sparked extensive research efforts into the physiological and pathogenetic role of polycystin-1 and polycystin-2, the proteins encoded by these two genes. While polycystin-1 may mediate the contact among cells or between cells and the extracellular matrix, a lot of evidence suggests that polycystin-2 represents an endoplasmic reticulum-bound cation channel. Cyst development has been compared to the growth of benign tumors and this view is highlighted by the model that a somatic mutation in addition to the germline mutation is responsible for cystogenesis (two-hit model of cyst formation). Since in vitro polycystin-1 and polycystin-2 interact through their COOH termini, the two proteins possibly act in a common pathway, which controls the width of renal tubules. The loss of one protein may lead to a disruption of this pathway and to the uncontrolled expansion of tubules. Our increasing knowledge of the molecular events in ADPKD has also started to be useful in designing novel diagnostic and therapeutic strategies. Received 12 September 2001; received after revision 7 November 2001; accepted 7 November 2001  相似文献   

4.
Despite the considerable progress in modern tumor therapy, the prognosis for patients with glioblastoma, the most frequent malignant brain tumor, has not been substantially improved. Although cytoreductive surgery and radiotherapy are the mainstays of treatment for malignant glioma at present, novel cytotoxic drugs and immunotherapeutic approaches hold great promise as effective weapons against these malignancies. Thus, great efforts are being made to enhance antitumoral efficacy by combining various cytotoxic agents, by novel routes of drug administration, or by combining anticancer drugs and immune modulators. Immunotherapeutic approaches include cytotoxic cytokines, targeted antibodies, and vaccination strategies. However, the success of most of these experimental therapies is prevented by the marked molecular resistance of glioma cells to diverse cytotoxic agents or by glioma-associated immunosuppression. One promising experimental strategy to target glioma is the employment of death ligands such as CD95 (Fas/Apo1) ligand or Apo2 ligand (TRAIL). Specific proapoptotic approaches may overcome many of the obvious obstacles to a satisfactory management of malignant brain tumors. Received 8 March 1999; received after revision 27 May 1999; accepted 14 June 1999  相似文献   

5.
6.
7.
Sophisticated molecular genetic, biochemical and biophysical studies have been used to probe the molecular mechanism of actomyosin-based motility. Recent solution measurements, high-resolution structures of recombinant myosin motor domains, and lower resolution structures of the complex formed by filamentous actin and the myosin motor domain provide detailed insights into the mechanism of chemomechanical coupling in the actomyosin system. They show how small conformational changes are amplified by a lever-arm mechanism to a working stroke of several nanometres, explain the mechanism that governs the directionality of actin-based movement, and reveal a communication pathway between the nucleotide binding pocket and the actin-binding region that explains the reciprocal relationship between actin and nucleotide affinity. Here we focus on the interacting elements in the actomyosin system and the communication pathways in the myosin motor domain that respond to actin binding.Received 12 January 2005; received after revision 4 March 2005; accepted 23 March 2005  相似文献   

8.
Regulatory mechanisms of atrial fibrotic remodeling in atrial fibrillation   总被引:2,自引:0,他引:2  
Electrical, contractile and structural remodeling have been characterized in atrial fibrillation (AF), and the latter is considered to be the major contributor to AF persistence. Recent data show that interstitial fibrosis can predispose to atrial conduction impairment and AF induction. The interplay between cardiac matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of MMPs (TIMPs), is thought to be critical in atrial extracellular matrix (ECM) metabolism. At the molecular level, angiotensin II, transforming growth factor-beta1, inflammation and oxidative stress are particularly important for ECM dysregulation and atrial fibrotic remodeling in AF. Therefore, we review recent advances in the understanding of the atrial fibrotic process, the major downstream components in this remodeling process, and the expression and regulation of MMPs and TIMPs. We also describe the activation of bioactive molecules in both clinical studies and animal models to modulate MMPs and TIMPs and their effects on atrial fibrosis in AF.  相似文献   

9.
Membrane fission is essential in various intracellular dissociative transport steps. The molecular mechanisms by which endocytic vesicles detach from the plasma membrane are being rapidly elucidated. Much less is known about the fission mechanisms operating at Golgi tubular networks; these include the Golgi transport and sorting stations, the trans-Golgi and cis-Golgi networks, where the geometry and physical properties of the membranes differ from those at the cell surface. Here we discuss the lipid and protein machineries that have so far been related to the fission process, with emphasis on those acting in the Golgi complex. Received 10 May 2002; received after revision 20 June 2002; accepted 26 June 2002 RID="*" ID="*"Corresponding author.  相似文献   

10.
Regulatory T cells (Tregs) are a critical subset of T cells that mediate peripheral tolerance. There are two types of Tregs: natural Tregs, which develop in the thymus, and induced Tregs, which are derived from naive CD4+ T cells in the periphery. Tregs utilize a variety of mechanisms to suppress the immune response. While Tregs are critical for the peripheral maintenance of potential autoreactive T cells, they can also be detrimental by preventing effective anti-tumor responses and sterilizing immunity against pathogens. In this review, we will discuss the development of natural and induced Tregs as well as the role of Tregs in a variety of disease settings and the mechanisms they utilize for suppression. C. J. Workman, A. L. Szymczak-Workman, L. W. Collison, and M. R. Pillai contributed equally.  相似文献   

11.
12.
Neuropeptide Y (NPY) increases blood pressure either directly or indirectly by potentiating the effect of various vasoconstrictors. Only one (the Y1-receptor) of two subtypes of receptors (Y1 and Y2) is thought to mediate the vascular smooth muscle contraction. To test this hypothesis we challenged isolated rat mesenteric arteries that had a functional endothelium with (1–36) NPY and with specific Y1-receptor ([Leu31, Pro34] NPY) and Y2-receptor ([Ahx5–24, -Glu2--Lys30] NPY) agonists. The Y1-receptor agonist elicited a contractile response similar to that of NPY, whereas the Y2-receptor agonist had no effect on wall tension. We also found that the presence of a functional endothelium has no influence on the contractile response to NPY. From these data we conclude that the direct contractile effect of NPY in the mesenteric artery is mediated by stimulation of Y1-receptors and is not endothelium-dependent.  相似文献   

13.
TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in TRAIL-sensitive human malignant glioma cells. We show for the first time that TRAIL stimulates cell growth in TRAIL-resistant glioma cells. TRAIL-induced cell growth in resistant cells occurred through increased cell cycle progression as determined by flow cytometry and Western blot analysis of retinoblastoma protein phosphorylation. Western blot analysis of TRAIL-treated resistant cells revealed phosphorylation of ERK1/2 proteins and in vitro kinase analysis confirmed the activation of the ERK1/2 kinases. Inhibition of MEK1 eliminated both TRAIL-induced ERK1/2 activation and cell proliferation. In addition, siRNA inhibition of c-FLIP expression eliminates TRAIL-induced ERK1/2 activation and proliferation. Furthermore, overexpression of c-FLIPL potentiates TRAIL-induced ERK1/2 activation and proliferation of resistant glioma cells. Our results have shown for the first time that TRAIL-induced ERK1/2 activation and proliferation of TRAIL-resistant human glioma cells is dependent upon the expression of the long form of the caspase-8 inhibitor c-FLIPL. Received 2 November 2007; received after revision 14 December 2007; accepted 21 December 2007  相似文献   

14.
Here we show that a small GTPase, Rab32, is a novel protein required for the formation of autophagic vacuoles. We found that the wild-type or GTP-bound form of human Rab32 expressed in HeLa and COS cells is predominantly localized to the endoplasmic reticulum (ER), and overexpression induces the formation of autophagic vacuoles containing an autophagosome marker protein LC3, the ER-resident protein calnexin and endosomal/lysosomal membrane protein LAMP-2, even under nutrient-rich conditions. The recruitment of Rab32 to the ER membrane was necessary for autophagic vacuole formation, suggesting involvement of the ER as a source of autophagosome membranes. In contrast, the expression of the inactive form of, or siRNA-specific for, Rab32 caused the formation of p62/SQSTM1 and ubiquitinated protein-accumulating aggresome-like structures and significantly prevented constitutive autophagy. We postulate that Rab32 facilitates the formation of autophagic vacuoles whose membranes are derived from the ER and regulates the clearance of aggregated proteins by autophagy. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
17.
Five natural cularines isolated from the aerial parts ofSarcocapnos crassifolia (Fumariaceae) and a cularioid isolated from the bark ofGuatteria ouregou (Annonaceae) were tested for their ability to displace3H-SCH 23 390 and3H-raclopride from their striatal binding sites. Celtisine, breoganine and cularidine were able to inhibit the binding at D-1 and D-2 dopaminergic sites at nanomolar concentrations. Other alkaloids were active at micromolar concentrations. These data suggest that the presence of an oxepine system in the isoquinoline skeleton could lead to compounds which would be very active and possibly selective at dopaminergic receptor sites.  相似文献   

18.
Relaying a signal across the plasma membrane requires functional connections between the partner molecules. Membrane microdomains or lipid rafts provide an environment in which such specific interactions can take place. The integrity of these sites is often taken for granted when signalling pathways are investigated in cell culture. However, it is well known that smooth muscle and endothelial cells undergo cytoskeletal rearrangements during monolayer culturing. Likewise affected – and with potentially important consequences for signalling events – is the organization of the plasma membrane. The expression levels of three raft markers were massively upregulated, and raft-associated 5-nucleotidase activity increased in conventional monolayer cultures as compared with a spheroidal coculture model, shown to promote the differentiation of endothelial cells. Our data point to a shift of raft components in monolayer cultures and demonstrate potential advantages of the spheroid coculture system for investigation of raft-mediated signalling events in endothelial cells.Received 4 August 2003; received after revision 18 September 2003; accepted 25 September 2003  相似文献   

19.
Sera from different mammalian species displayed great differences in mitogenic activity, as measured by stimulation of DNA synthesis in BALB/c 3T3 cells (3T3 cells). Among the sera examined, fetal bovine serum was least active, and increasing activity was detected in calf serum, human serum, rat serum and mouse serum, in that order. Rat and mouse sera exhibited extremely high mitogenic activity with 3T3 cells, but when TIG-1 human fetal lung fibroblasts were used for the DNA assay instead, the activity levels of all of the sera were lower, and the differences between them were smaller. To determine the reasons for these differences, the heparin-binding growth factors in each serum were separated on a heparin affinity column. Five peaks of DNA-stimulating activity were obtained. Three of these were found in all sera examined, with both 3T3 cells and TIG-1 cells. Two other peaks were found only with 3T3 cells; one was peculiar to rat and mouse sera, with extremely high activity in the rat, and the other was specific to fetal serum. The dependence of the activity of these peaks on the cells used for the test was confirmed using normal rat lung fibroblasts and immortalized rat kidney cells. These findings adequately explain the species-specific differences in mitogenic activity of whole sera, and the variation in activity depending on the cells used for assay of DNA synthesis.  相似文献   

20.
In recent years the Arp2/3 complex has emerged as a central regulator of actin dynamics, assembling and cross-linking actin filaments to produce a diverse array of cellular structures. Here I discuss our current state of knowledge about this actin-remodelling machine. The predicted structure of the Arp2/3 complex can be directly correlated with its ability to nucleate, cap and cross-link actin filaments. A growing family of Arp2/3 complex activators such as the WASP family, type I myosins, and the newly identified activators cortactin and Abp1p tightly regulate this activity within the cell. Localised activation of the Arp2/3 complex produces structures such as lamellipodia or actin patches via a process termed dendritic nucleation. Furthermore, several pathogenic microorganisms have evolved strategies to 'hijack' the Arp2/3 complex to their own advantage. Finally, I discuss some of the questions which remain unanswered about this fascinating complex. Received 2 April 2001; received after revision 15 May 2001; accepted 18 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号