共查询到17条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
通过构造以色集合和空集为元素的矩阵,利用色集合事先分配法及构造具体染色的方法,证明mC14的最优点可区别Ⅰ-全染色及最优点可区别Ⅵ-全染色,确定图mC14的点可区别Ⅰ-全色数和点可区别Ⅵ-全色数。结论表明,点可区别Ⅰ-全染色猜想和点可区别Ⅵ-全染色猜想对图mC14成立。 相似文献
5.
考虑m个长为7的圈点不交的并mC7的点可区别全染色问题.通过构造以色集合为元素的矩阵,利用色集合事先分配法及递归法确定染色,得出了mC_7的点可区别全色数的确切值.结果表明VDTC猜想对图mC_7成立. 相似文献
6.
利用色集事先分配法, 借助于矩阵构造具体染色及递归法的方法, 研究图的点可区别全染色问题, 给出了m个K4的点不交的并mK4的点可区别全色数χvt(mK4)的确切值, 即“如果k-14<4m≤k4, m≥2, k≥6, 则χvt(mK4)=k”. 验证了VDTC猜想对mK4成立. 相似文献
7.
给出了最小度至少是2的图G的k重Mycielski图M~k(G)(其中k为正整数)的点可区别全色数的上界. 相似文献
8.
利用色集合事先分配法及具体的染色给出了mC7的最优点可区别Ⅰ-全染色以及最优点可区别Ⅵ-全染色,进而确定了图mC7的点可区别Ⅰ-全色数及点可区别Ⅵ-全色数。结论表明VDITC猜想和VDVITC猜想对图mC7成立。 相似文献
9.
通过构造以色集合和空集为元素的矩阵,利用色集合事先分配法及具体的染色方案,给出图mC8的最优点可区别Ⅰ-全染色和最优点可区别Ⅵ-全染色,进而确定图mC8的点可区别Ⅰ-全色数和点可区别Ⅵ-全色数.结果表明,VDITC猜想和VDVITC猜想对图mC8成立. 相似文献
10.
设G(V,E)是阶数至少为2的简单连通图,k是正整数,V∪E到{1,2,3,…,k)的映射f满足:对任意uυ,υw∈E(G),u≠w,有f(uv)≠f(υw);对任意uυ∈E(G),有,(u)≠,(υ),f(u)≠f(uυ),f(υ)≠f(uυ);那么称f为G的k-正常全染色,若,还满足对任意uυ∈E(G),有C(u)≠C(υ),其中C(u)={(u))∪{f(uυ)|uυ∈E(G),υ∈V(G)),那么称,为G的k-邻点可区别的全染色(简记为k-AVDTC),称min{k|G有k-邻点可区别的全染色)为G的邻点可区别的全色数,记作xat(G).本文得到了圈Cm和完全图Kn的笛卡尔积图Cm×Kn邻点可区别的全色数. 相似文献
11.
设G的阶数不小于2的简单连通图。G的k-正常全染色称为是邻点可区别的,如果对G的任意相邻的两顶点,其点的颜色及关联边的颜色构成的集合不同。这样的k中最小者称为G的邻点可区别全色数。本文主要是给出了星图和路的联图的邻点可区别全色数,并提出了一猜想。 相似文献
12.
13.
孟献青 《山西师范大学学报:自然科学版》2013,(4):11-14
图G的一个正常全染色称为图G的点强全染色,当且仅当N[v]中任意元素都染有不同的颜色,其中N[v]={u}uu∈E(G)}U{u},图G的点强全染色所用颜色的最少数目称为图G的点强全色数.文章通过研究幂图t的结构性质,利用穷染、置换的方法,研究了幂图礴的点强全色数,并给出了一种具体的染色方案. 相似文献
14.
图G的一个正常全染色被称为邻点可区别全染色,如果G中任意两个相邻点的色集合不同.论文确定了k4-minor-free图的邻点可区别全色数. 相似文献
15.
对一个正常的全染色满足各种颜色所染元素数(点或边)相差不超过1时,称为均匀全染色,其所用最少染色数称为均匀全色数。本研究得到了G∨H的均匀全色数为它的阶,若满足以下条件之一:(1)当G的最大度等于它的阶减1,且G∨H的顶点数为奇数;(2)当G只有一个最大度点,且最大度等于它的阶减1,且H的最大度不大于它的阶减2,还得到了当G与H的最大度都分别不超过各自的阶减2时,G∨H的均匀全色数的一个上界。 相似文献
16.
图G的全色数χT(G)是使得V(G)∪E(G)中相邻或相关联的元素均染不同颜色的最少数目.如果χT(G)=Δ(G)+1,则称G是1-型的.证明了在m≠n1+2时非等部完全偶图Kn1,n2(n1相似文献
17.
根据路的幂图Pkn的结构性质,用穷染、递推的方法,讨论了Pkn的邻点可区别全染色和邻点可区别-VE全染色,得到了相应的色数,并给出了一种染色方案. 相似文献