首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用水热反应法和正硅酸乙酯水解法制备出核壳结构的Au/C纳米球颗粒以及夹层结构的Au/C/SiO<,2>纳米球颗粒,在空气中锻烧将Au/C/SiO<,2>夹层结构中的碳层除去,得到内部带有可移动纳米金核、壳层厚度约为20 nM的中空Au/SiO<,2>纳米球颗粒.用透射电子显微镜对所制得的纳米微球的形貌进行表征,并用红...  相似文献   

2.
制备了氧化铟锡(ITO)/二氧化锡(SnO2)/二氧化钛(TiO2)/金纳米粒子(Au NPs)纳米复合电极(ITO/SnO2/TiO2/Au NPs),并利用它发展了可以选择性检测唾液酸(SA)的光电化学(PEC)法.采用旋涂法制备了ITO/SnO2电极,并通过静电纺丝和磁控溅射技术在ITO/SnO2表面原位合成了TiO2纳米纤维和Au NPs.与单纯SnO2比,ITO/SnO2/TiO2/Au NPs纳米复合电极的光电性能显著提高.这可能与Au NPs的局域表面等离子体共振效应(LSPR)和TiO2/SnO2异质结之间的协同作用密切相关.之后,通过金硫键(Au-S)将四巯基苯硼酸(4-MPBA)修饰在ITO/SnO2/TiO2/Au NPs电极表面,利用4-MPBA和SA之间的非特异性酯化反应,发展了可以特异性检测SA的PEC传感平台.  相似文献   

3.
4.
In this paper, the Au nanoparticles and rare-earth (RE) upconversion nanoparticles (NPs) were respectively synthesized by using polyelectrolyte as the capping agents. Since the synthesized Au NPs and RE NPs had the similar size and surface conditions, Their mixture were employed in a pH sensing application. Benefited from the good spectral overlap between the RE upconversion emission bands and pH-tunable surface plasmon bands of the Au NPs, the pH-induced manipulation of green-to-red emission intensity ratio of the upconversion fluorescence was achieved in the Au-RE mixture. The results demonstrate a rapid ratiometric approach for pH sensing, which is more efficient than traditional sensing methods that depend on single intensity-based responses to analytes.  相似文献   

5.
金银合金纳米粒子的制备   总被引:1,自引:0,他引:1  
以柠檬酸钠为稳定剂,利用硼氢化钠还原AgNO3和HAuCl4混合溶液制备了Au-Ag合金纳米粒子,UV-Vis光谱谱图只观察到一个位于纯银和纯金之间的表面等离子体共振峰,且该表面等离子体共振峰的最大吸收波长与合金中Au的摩尔分数成线性关系.TEM结果表明:Au-Ag合金纳米粒子的粒径大约为43 nm,且颜色均一,没有明...  相似文献   

6.
An important and difficult issue is simultaneously identifying the detailed locations of various molecules on the cell surface, as this identification requires a synergistic effect between more than one molecule in a living cell. Au nanoparticles (NPs) with different shapes can be readily recognised under low vacuum scanning electron microscopy (lvSEM). Anisotropic Au nanorods (NRs) possess unique surface plasmon resonance (SPR) properties, which can be further utilised for two photon luminescence (TPL) and other optical imaging techniques. In this paper, Au NRs and Au nanooctahedra (Au NOs) are introduced as biomarkers for ICAM-1 and Integrin β1. Combined with the advantages of lvSEM, this multiple-labelling method is a new method for studying the interactions between specific, functional molecules.  相似文献   

7.
在水溶液中用柠檬酸钾还原氯金酸的方法合成了粒径为30~40nm的金纳米粒子,并用透射电镜和紫外可见光谱进行了表征;然后在表面经PVP修饰的导电玻璃上以自组装的方式构筑了金纳米粒子的二维有序阵列,并用扫描电镜和紫外可见光谱进行了表征;以所制备的金纳米粒子二维有序阵列作为电极,对硝基苯酚的电化学响应得到明显提高,金纳米有序阵列电极有望成为检测废水中对硝基苯酚的电化学传感器.  相似文献   

8.
Fe_3O_4 nanoparticles(NPs) with a face-centered cubic(fcc) structure and two different morphologies(nanospheres and nanoprisms) were synthesized by a facile one-step method.The synthesized Fe_3O_4 nanospheres and nanoprisms were monocrystalline and separable in a magnetic field.In different volume ratios of oleylamine(OAm) to dibenzyl ether,the sizes of the prepared Fe_3O_4 NPs ranged from 5 to 21 nm.The OAm amount in the synthesis can significantly control the morphology of Fe_3O_4 NPs.As the OAm content increased from 10 ml to 30 ml,the faceted nanoprisms shrank while the nanospheres enlarged.At an OAm content of 25 ml,the nanoprisms diminished while more hexagonal and sphere-like particles appeared,implying a critical point of morphology transition from triangle to hexagon.The magnetic properties also depended on the NP morphology and size.The prepared Fe_3O_4 NPs are promising candidates in medical applications such as magnetic resonance imaging,targeted drug delivery,blood purification,and tumor hyperthermia.  相似文献   

9.
In this work, the preparation of chitosan-poly(acrylic acid)-calcium phosphate hybrid nanoparticles (CS-PAA-CaP NP) based on the mineralization of calcium phosphate (CAP) on the surface of chitosan-poly (acrylic acid) nanoparticles (CS-PAA NPs) was reported. CS-PAA-CaP NPs were achieved by directly adding ammonia to the aqueous solution of CS-PAA nanoparticles or by thermal decomposition of urea in the aqueous solution of CS-PAA nanoparticles, resulting in the mineralization of CaP on the surface of CS-PAA NPs. Through these two routes, especially using urea as a pH-regulator, the precipitation of CS-PAA NPs, a common occurrence in basic environment, was avoided. The size, morphology and ingredient of CS-PAA-CaP hybrid nanoparticles were characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), scanning electron microscope (SEM), thermogravimetry analysis (TGA) and X-ray diffractometer (XRD). When urea was used as the pH regulator to facilitate the mineralization during the thermal urea decomposition procedure, regular CS-PAA-CaP hybrid nanoparticles with a porosity-structural CaP shells and 400-600 nm size were obtained. TGA result revealed that the hybrid NPs contained approximately 23% inorganic component, which was consistent with the ratio of starting materials. The XRD spectra of hybrid nanoparticles in- dicated that dicalcium phosphate (DCP: CaHPO4) crystal was a dominant component of mineralization. The porous structure of the CS-PAA-CaP hybrid NPs might be greatly useful in pharmaceutical and other medical applications.  相似文献   

10.
首先制备镉离子的LB单层膜,将硫化氢气体通人LB膜,并与之反应生成硫化镉纳米微粒,再与氯金酸发生氧化还原反应,形成金纳米粒子二维结构.AFM表征显示,所生成的金纳米粒子是单层结构,粒径为10nm左右,XPS结果表明,硫化镉与氯金酸反应生成单质金的二维纳米结构.  相似文献   

11.
Matter structured on a length scale comparable to or smaller than the wavelength of light can exhibit unusual optical properties. Particularly promising components for such materials are metal nanostructures, where structural alterations provide a straightforward means of tailoring their surface plasmon resonances and hence their interaction with light. But the top-down fabrication of plasmonic materials with controlled optical responses in the visible spectral range remains challenging, because lithographic methods are limited in resolution and in their ability to generate genuinely three-dimensional architectures. Molecular self-assembly provides an alternative bottom-up fabrication route not restricted by these limitations, and DNA- and peptide-directed assembly have proved to be viable methods for the controlled arrangement of metal nanoparticles in complex and also chiral geometries. Here we show that DNA origami enables the high-yield production of plasmonic structures that contain nanoparticles arranged in nanometre-scale helices. We find, in agreement with theoretical predictions, that the structures in solution exhibit defined circular dichroism and optical rotatory dispersion effects at visible wavelengths that originate from the collective plasmon-plasmon interactions of the nanoparticles positioned with an accuracy better than two nanometres. Circular dichroism effects in the visible part of the spectrum have been achieved by exploiting the chiral morphology of organic molecules and the plasmonic properties of nanoparticles, or even without precise control over the spatial configuration of the nanoparticles. In contrast, the optical response of our nanoparticle assemblies is rationally designed and tunable in handedness, colour and intensity-in accordance with our theoretical model.  相似文献   

12.
在p型硅衬底上, 制备了金属-有机-金属(metal-organic-metal, MOM)电激发表面等离激元器件。器件结构是p-Si/Au/V2O5/NPB/Alq3:DCM/Sm/Au, 掺杂DCM的Alq3为发光层。高倍显微镜下, 器件侧面发光图像显示, 绝大部分光被限制在双金层结构波导中传播。采用微区共焦拉曼光谱仪, 分别测量了侧面出射的非偏振模式、TM模式和TE模式电致发光谱。TM模式强度约为TE模式强度的2倍。分析认为, 具有TM偏振特性的表面等离激元(surface plasmon polariton, SPP)在侧面电致发光中起重要作用。 发光体的能量耗散谱表明SPP模式能量约占总能量65%。利用时域有限差分法(finite-different time-domain, FDTD)对简化结构进行模拟, 得到了泄漏模和SPP模式的二维电场强度分布。  相似文献   

13.
基于壳聚糖载体的蛋白质药物纳米颗粒制备研究   总被引:6,自引:0,他引:6  
采用基于壳聚糖(CS)与聚阴离子(多聚磷酸纳)间静电作用的离子凝胶化方法,以牛血清白蛋白(BSA)为模型,在室温下制备了包载蛋白质的亲水性壳聚糖纳米颗粒.对BSA-壳聚糖纳米颗粒的形成条件进行了考察,结果表明:在pH值为5.0,CS与TPP的质量比为4,壳聚糖分子量为40 kDa的最优化的条件下可制备粒径小于100 nm的BSA-壳聚糖纳米颗粒,对BSA的包封率达到50%以上.并将该体系初步应用于蛋白类药物丙种球蛋白-壳聚糖纳米颗粒的制备研究,这种壳聚糖纳米颗粒对丙种球蛋白具有良好的缓释作用.  相似文献   

14.
Scholl JA  Koh AL  Dionne JA 《Nature》2012,483(7390):421-427
The plasmon resonances of metallic nanoparticles have received considerable attention for their applications in nanophotonics, biology, sensing, spectroscopy and solar energy harvesting. Although thoroughly characterized for spheres larger than ten nanometres in diameter, the plasmonic properties of particles in the quantum size regime have been historically difficult to describe owing to weak optical scattering, metal-ligand interactions, and inhomogeneity in ensemble measurements. Such difficulties have precluded probing and controlling the plasmonic properties of quantum-sized particles in many natural and engineered processes, notably catalysis. Here we investigate the plasmon resonances of individual ligand-free silver nanoparticles using aberration-corrected transmission electron microscope (TEM) imaging and monochromated scanning TEM electron energy-loss spectroscopy (EELS). This technique allows direct correlation between a particle's geometry and its plasmon resonance. As the nanoparticle diameter decreases from 20 nanometres to less than two nanometres, the plasmon resonance shifts to higher energy by 0.5 electronvolts, a substantial deviation from classical predictions. We present an analytical quantum mechanical model that describes this shift due to a change in particle permittivity. Our results highlight the quantum plasmonic properties of small metallic nanospheres, with direct application to understanding and exploiting catalytically active and biologically relevant nanoparticles.  相似文献   

15.
采用化学浴法制备了花形ZnO纳米棒簇,将平均粒径约40 nm的Au纳米粒子引入ZnO表面得到不同Au修饰量的Au/ZnO复合结构.Uv-vis吸收光谱表明,在Au和ZnO之间存在着作用力使Au的吸收光谱产生红移,这种作用力的存在使复合结构的气敏性能得到了较显著的改善.当Au修饰的质量分数为6%时,复合材料的气敏性能最高,对丙酮气体的灵敏度较纯ZnO提高了约17倍.  相似文献   

16.
Recent research effort towards developing novel metal nanoparticles (NPs) and their ordered arrays have been motivated by the emergence of plasmonics. In particular, tuning the size, morphology, composition and the separation of metal NPs has allowed us to engineer the collective properties of plasmonic crystals for specific applications. Here we present our recent development of bottom-up growth methods and demonstrate convenience for the preparation of such plasmonic materials. By implementation of physical, chemical, or electrochemical deposition of a metal in combination with micromolding on two-dimensional colloidal crystals, metallic NPs with a variety of morphologies can be created in an ordered lattice. The prepared novel plasmonic crystals could find applications in optics, optoelectronics, materials science, sensing and biophysics.  相似文献   

17.
用核酸适体修饰的纳米金共振散射光谱探针可实现对微纳空间内凝血酶的特异性识别与检测.提出了一种基于局域表面等离子体共振-暗场显微光谱联用技术的分析方法,研究了局域在金纳米粒子表面的生物分子的识别过程对局域表面等离子体共振散射光谱的影响.研究了单颗粒纳米粒子的形貌特征,实现了单分子层面上生物分子识别过程的追踪.  相似文献   

18.
With the development of nanotechnology, many new optical phenomena in nanoscale have been demonstrated. Through the coupling of optical waves and collective oscillations of free electrons in metallic nanostructures, surface plasmon polaritons can be excited accompanying a strong near field enhancement that decays in a subwavelength scale, which have potential applications in the surface-enhanced Raman scattering, biosensor, optical communication, solar cells, and nonlinear optical frequency mixing. In the present article, we review the Green’s matrix method for solving the surface plasmon resonances and near field in arbitrarily shaped nanostructures and in binary metallic nanostructures. Using this method, we design the plasmonic nanostructures whose resonances are tunable from the visible to near-infrared, study the interplay of plasmon resonances, and propose a new way to control plasmonic resonances in binary metallic nanostructures.  相似文献   

19.
采用时域有限差分法(FDTD)方法计算了细胞摄入金纳米颗粒后的消光光谱,并对金纳米颗粒在细胞中3种不同的分布做了比较:金纳米颗粒均匀分布细胞膜上;金纳米颗粒在细胞质内均匀分布,不存在于细胞核中;金纳米颗粒在整个细胞中均匀分布.分析结果表明,由于金纳米颗粒的等离子共振效应,细胞在可见光区域的散射截面产生增强,并且其消光光谱的峰形和消光峰的位置也发生相应的变化,这种变化依赖于金纳米颗粒在细胞内的分布情况.当金纳米颗粒在细胞膜上均匀分布的时候,细胞的消光光谱的峰值最大,而另外2种情况则形成较宽的消光峰.计算结果有助进一步理解纳米颗粒在细胞内的扩散或生长的过程.  相似文献   

20.
Noble metal nanoparticles with localized surface plasmon resonance (LSPR) properties are widely used as optical sensors in biochemical detection and medical diagnosis. In this paper, we propose an effective determination method to measure the LSPR absorption intensity of gold nanorods (GNRs). A near-infrared (NIR) imaging system is established, and an NIR absorption image of the multiple samples of the colloidal GNRs is captured. Then, the LSPR absorption intensities of these samples are obtained by calculating the average grayscale of the target areas based on the NIR image processing technology. By using this method, the LSPR absorption intensities of the multiple samples are determined all at once, and their accuracy is as high as that obtained by using spectrophotometry. These results suggest that this method is an efficient multi-channel determination technique with high-throughput sensing applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号