首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Vγ9Vδ2 T cells play a crucial role in the antitumoral immune response through cytokine production and cytotoxicity. Although the expression of the immunomodulatory molecule HLA-G has been found in diverse tumors, its impact on Vγ9Vδ2 T-cell functions remains unknown. Here we showed that soluble HLA-G inhibits Vγ9Vδ2 T-cell proliferation without inducing apoptosis. Moreover, soluble HLA-G inhibited the Vγ9Vδ2 T-cell production of IFN-γ induced by phosphoantigen stimulation. The reduction in Vγ9Vδ2 T-cell IFN-γ production was also induced by membrane-bound or soluble HLA-G expressed by tumor cell lines. Finally, primary tumor cells inhibited Vγ9Vδ2 T-cell proliferation and IFN-γ production through HLA-G. In this context, HLA-G impaired Vγ9Vδ2 T-cell cytotoxicity by interacting with ILT2 inhibitory receptor. These data demonstrate that HLA-G inhibits the anti-tumoral functions of Vγ9Vδ2 T cells and imply that treatments targeting HLA-G could optimize Vγ9Vδ2 T-cell-mediated immunotherapy of cancer.  相似文献   

2.
Although the expression of the non-classical HLA class I molecule HLA-G was first reported to be restricted to the fetal–maternal interface on the extravillous cytotrophoblasts, the distribution of HLA-G in normal tissues appears broader than originally described. HLA-G expression was found in embryonic tissues, in adult immune privileged organs, and in cells of the hematopoietic lineage. More interestingly, under pathophysiological conditions HLA-G antigens may be expressed on various types of malignant cells suggesting that HLA-G antigen expression is one strategy used by tumor cells to escape immune surveillance. In this article, we will focus on HLA-G expression in cancers of distinct histology and its association with the clinical course of diseases, on the underlying molecular mechanisms of impaired HLA-G expression, on the immune tolerant function of HLA-G in tumors, and on the use of membrane-bound and soluble HLA-G as a diagnostic or prognostic biomarker to identify tumors and to monitor disease stage, as well as on the use of HLA-G as a novel therapeutic target in cancer.  相似文献   

3.
The non-classical HLA class I molecule HLA-G was initially shown to play a major role in feto–maternal tolerance. Since this discovery, it has been established that HLA-G is a tolerogenic molecule which participates to the control of the immune response. In this review, we summarize the recent advances on (1) the multiple structures of HLA-G, which are closely associated with their role in the inhibition of NK cell cytotoxicity, (2) the factors that regulate the expression of HLA-G and its receptors, (3) the mechanism of action of HLA-G at the immunological synapse and through trogocytosis, and (4) the generation of suppressive cells through HLA-G. Moreover, we also review recent findings on the non-immunological functions of HLA-G in erythropoiesis and angiogenesis.  相似文献   

4.
Emerging topics and new perspectives on HLA-G   总被引:1,自引:1,他引:0  
Following the Fifth International Conference on non-classical HLA-G antigens (HLA-G), held in Paris in July 2009, we selected some topics which focus on emerging aspects in the setting of HLA-G functions. In particular, HLA-G molecules could play a role in: (1) various inflammatory disorders, such as multiple sclerosis, intracerebral hemorrhage, gastrointestinal, skin and rheumatic diseases, and asthma, where they may act as immunoregulatory factors; (2) the mechanisms to escape immune surveillance utilized by several viruses, such as human cytomegalovirus, herpes simplex virus type 1, rabies virus, hepatitis C virus, influenza virus type A and human immunodeficiency virus 1 (HIV-1); and (3) cytokine/chemokine network and stem cell transplantation, since they seem to modulate cell migration by the downregulation of chemokine receptor expression and mesenchymal stem cell activity blocking of effector cell functions and the generation of regulatory T cells. However, the immunomodulatory circuits mediated by HLA-G proteins still remain to be clarified.  相似文献   

5.
The nonclassical HLA-G molecule is a trophoblast-specific molecule present in almost every pregnancy. It differs from classical HLA class I molecules by the low degree of allelic variants and the high diversity of protein structures. HLA-G is reported to be a tolerogenic molecule that acts on cells of both innate and adaptive immunity. At the maternal–fetal interface HLA-G seems to be responsible largely for the reprogramming of local maternal immune response. This review will focus on the HLA-G gene expression profile in pregnancy, in preimplantation embryos, and in human embryonic stem cells with emphasis on the structural diversity of the HLA-G protein and its potential functional and diagnostic implications.  相似文献   

6.
7.
Data are presented on the intracellular trafficking of HLA-G protein, taking the unique features of this non-classical molecule into consideration: the existence of seven isoforms resulting from alternative splicing (HLA-G1 to G7), and reduced tail length compared with HLA class I antigens. Biochemical studies and analysis of viral strategies for escaping the host immune system led to the demonstration that (i) both the membrane-bound (HLA-G1) and the soluble (HLA-G5) forms of the molecule require peptide association for cell surface expression, using TAP-dependent or TAP-independent pathways; (ii) peptide loading onto the HLA-G protein plays a critical role in controlling the quality of the molecule reaching the cell surface; (iii) surface expression of truncated HLA-G molecules is possible, and (iv) HLA-G expression may be restricted to soluble HLA-G5. These data reveal that HLA-G presents specific cell trafficking pathways and strongly support the contention that the primary function of HLA-G is as of an inhibitor ligand for immune-competent cells. Received 4 June 2002; accepted 2 July 2002 RID="*" ID="*"Corresponding author.  相似文献   

8.
The central nervous system (CNS) is considered an immune-privileged organ that maintains an adaptable immune surveillance system. Dysregulated immune function within the CNS contributes to the development of brain tumor growth, and robust immune activation results in excessive inflammation. Human lymphocyte antigen-G (HLA-G) proteins with tolerogenic immunoreactivity have been implicated in various pathophysiological processes including immune surveillance, governing homeostasis and immune regulation. In this review, we describe the wealth of evidence for the involvement of HLA-G in the CNS under physiological and pathological conditions. Further, we review regulatory functions that may be applicable as beneficial strategies in the therapeutic manipulation of immune-mediated CNS immune responses. Additionally, we try to understand how this molecule cooperates with other CNS-resident cells to maintain normal immune homeostasis, while still facilitating the development of the appropriate immune responses.  相似文献   

9.
Trogocytosis is the uptake of membranes from one cell by another. Trogocytosis has been demonstrated for monocytes, B cells, T cells, and NK cells. The acquisition of the tolerogenic molecule HLA-G by T cells and NK cells makes them behave as regulatory cells. We investigated here whether HLA-G, which is expressed by tumor cells in vivo, could be acquired by monocytes and if this transfer could have functional consequences. We demonstrate that resting, and even more so, activated monocytes efficiently acquire membrane-bound HLA-G from HLA-G tumor cells by trogocytosis. However, we demonstrate that HLA-G quickly disappears from the surface of the monocytes in contrast to the HLA-G acquired by T cells. Consequently, HLA-Gacq+ monocytes do not reliably inhibit the on-going proliferation of autologous activated T cells and do not inhibit their cytokine production. Thus, we show that the acquirer cell may control the functional outcome of trogocytosis.  相似文献   

10.
The non-classical Human leukocyte antigen G (HLA-G) differs from classical HLA class I molecules by its low genetic diversity, a tissue-restricted expression, the existence of seven isoforms, and immuno-inhibitory functions. Most of the known functions of HLA-G concern the membrane-bound HLA-G1 and soluble HLA-G5 isoforms, which present the typical structure of classical HLA class I molecule: a heavy chain of three globular domains α1–α2–α3 non-covalently bound to β-2-microglobulin (B2M) and a peptide. Very little is known of the structural features and functions of other HLA-G isoforms or structural conformations other than B2M-associated HLA-G1 and HLA-G5. In the present work, we studied the capability of all isoforms to form homomultimers, and investigated whether they could bind to, and function through, the known HLA-G receptors LILRB1 and LILRB2. We report that all HLA-G isoforms may form homodimers, demonstrating for the first time the existence of HLA-G4 dimers. We also report that the HLA-G α1–α3 structure, which constitutes the extracellular part of HLA-G2 and HLA-G6, binds the LILRB2 receptor but not LILRB1. This is the first report of a receptor for a truncated HLA-G isoform. Following up on this finding, we show that the α1–α3-Fc structure coated on agarose beads is tolerogenic and capable of prolonging the survival of skin allografts in B6-mice and in a LILRB2-transgenic mouse model. This study is the first proof of concept that truncated HLA-G isoforms could be used as therapeutic agents.  相似文献   

11.
The prevalence of liver diseases is increasing globally. Orthotopic liver transplantation is widely used to treat liver disease upon organ failure. The complexity of this procedure and finite numbers of healthy organ donors have prompted research into alternative therapeutic options to treat liver disease. This includes the transplantation of liver cells to promote regeneration. While successful, the routine supply of good quality human liver cells is limited. Therefore, renewable and scalable sources of these cells are sought. Liver progenitor and pluripotent stem cells offer potential cell sources that could be used clinically. This review discusses recent approaches in liver cell transplantation and requirements to improve the process, with the ultimate goal being efficient organ regeneration. We also discuss the potential off-target effects of cell-based therapies, and the advantages and drawbacks of current pre-clinical animal models used to study organ senescence, repopulation and regeneration.  相似文献   

12.
Detection of HLA-E and -G DNA alleles for population and disease studies   总被引:4,自引:0,他引:4  
HLA-E and -G genes show a restricted polymorphism encoding for molecules whose variability is limited at the peptide binding site. Fourteen alleles that give rise to only three productive proteins for HLA-G (*0101, *0103 and *0104) and five alleles with three different proteins for HLA-E (*0101, *0102 and *0103) have been described. Expression of these molecules is low and found in many tissues for HLA-E; HLA-G protein is expressed in extravillous trophoblast cells and thymic epithelium. Molecular studies have shown how HLA-G and HLA-E bind to natural killer (NK) cells immunoglobulin and lectin-type inhibitory receptors. HLA-E may act as a sentinel of the cell; if classical class I and HLA-G are being expressed, HLA-E molecules may reach the cell surface and inhibit the lysis by NK cells. Most findings are consistent with the hypothesis that HLA-E and -G proteins may be tolerogenic molecules at either the T-cell receptor (TcR) (inflammation, graft rejection) or NK level, switching off cells which usually attack foreign (including foetus) or self (autoimmune) antigens. A low HLA-E and -G polymorphism is observed in humans, and their allele frequencies are mostly homogeneous in the populations tested so far. Many studies to detect these alleles are now being performed in isolated populations and also in pregnancy-associated pathologies. In the present paper, standard and detailed techniques to detect HLA-E and -G DNA polymorphism are reported and discussed. Received 14 July 1999; received after revision 25 August 1999; accepted 25 August 1999  相似文献   

13.
The HLA-G gene displays several peculiarities that are distinct from those of classical HLA class I genes. The unique structure of the HLA-G molecule permits a restricted peptide presentation and allows the modulation of the cells of the immune system. Although polymorphic sites may potentially influence all biological functions of HLA-G, those present at the promoter and 3′ untranslated regions have been particularly studied in experimental and pathological conditions. The relatively low polymorphism observed in the MHC-G coding region both in humans and apes may represent a strong selective pressure for invariance, whereas, in regulatory regions several lines of evidence support the role of balancing selection. Since HLA-G has immunomodulatory properties, the understanding of gene regulation and the role of polymorphic sites on gene function may permit an individualized approach for the future use of HLA-G for therapeutic purposes.  相似文献   

14.
Non-adherent bone marrow-derived cells (NA-BMCs) are a mixed cell population that can give rise to multiple mesenchymal phenotypes and that facilitates hematopoietic recovery. We characterized NA-BMCs by flow cytometry, fibroblast colony-forming units (CFU-f), real-time PCR, and in in vivo experiments. In comparison to adherent cells, NA-BMCs expressed high levels of CD11b+ and CD90+ within the CD45+ cell fraction. CFU-f were significantly declining over the cultivation period, but NA-BMCs were still able to form CFU-f after 5 days. Gene expression analysis of allogeneic NA-BMCs compared to bone marrow (BM) indicates that NA-BMCs contain stromal, mesenchymal, endothelial cells and monocytes, but less osteoid, lymphoid, and erythroid cells, and hematopoietic stem cells. Histopathological data and analysis of weight showed an excellent recovery and organ repair of lethally irradiated mice after NA-BMC transplantation with a normal composition of the BM.  相似文献   

15.
16.
Immunotolerant functions of HLA-G   总被引:9,自引:0,他引:9  
  相似文献   

17.
The past 10years have witnessed dramatic progress in our understanding of how natural killer (NK) cells function and their role in innate immunity. Thanks to an array of inhibitory receptors specific for different HLA class I molecules, human NK cells can sense the decrease or loss of even single alleles at the cell surface. This represents a typical condition of a potential danger, i.e. the presence of tumor or virally infected cells. NK cell triggering and lysis of these cells is mediated by several activating receptors and coreceptors that have recently been identified and cloned. While normal cells are usually resistant to NK-mediated attack, a remarkable exception is represented by dendritic cells (DCs). In their immature form they are susceptible to NK-mediated lysis because of the expression of low levels of surface HLA class I molecules. The process of DC maturation (mDCs) is characterized by the surface expression of high levels of HLA class I molecules. Accordingly, mDCs become resistant to NK cells. A recent major breakthrough highlighted the role played by donor NK cells in allogenic bone marrow transplantation to cure acute myeloid leukemias. Alloreactive NK cells derived from donor hematopoietic precursors not only prevented leukemic relapses, but also prevented graft rejection and graft-versus-host disease.Received 12 March 2003; received after revision 18 April 2003; accepted 30 April 2003  相似文献   

18.
The immunological properties of human endothelial cells suggest they perform a pivotal role in acute and chronic rejection following solid organ transplantation. In this review the basic features of acute and chronic rejection are described as are the cellular and molecular requirements for antigen presentation. Traditionally, antigen-presenting cells are considered to be bone marrow-derived cells. However, these conclusions have been derived from rodent models of allograft rejection where bone marrow-derived passenger leukocytes are the only source of donor major histocompatibility complex (MHC) class II in the grafted organ. In contrast, in humans, virtually all the microvascular and small vessel endothelial cells are ‘constitutively’ positive for MHC class II antigens. The phenotypic properties of human endothelial cells, their response to cytokines and their ability to stimulate resting T cells are described. Unlike bone marrow-derived antigen presenting cells (APCs), which utilise B7/CD28 interactions, human endothelial cells utilise lymphocyte function antigen 3 (LFA3)/CD2 pathways to stimulate T cells. They activate a CD45RO + B7-independent subpopulation of T cells. Their effect on allogeneic T cells is compared with other non-bone marrow-derived cells such as fibroblasts, epithelial cells and smooth muscle cells, which are unable to stimulate resting T cells. Evidence is presented suggesting that release of MHC and non-human leukocyte antigens (HLA) from endothelial cells stimulates an alloantibody and autoimmune response leading to chronic rejection. Received 30 March 1998; received after revision 4 May 1998; accepted 4 May 1998  相似文献   

19.
Summary The autonomous expression of a recessive lethal mutation (ulcèreu), isolated in the salamanderPleurodeles waltlii Michah. is demonstrated by the way of parabiotic and telobiotic associations, allogenic chimaeras, heterotopic grafts of organ primordia and of anterior or posterior parts from lethal embryos.  相似文献   

20.
The immunosuppressants tacrolimus (FK506) and cyclosporin A (CsA) have increased the survival rates in organ transplantation. Both drugs inhibit the protein phosphatase calcineurin (CaN) in activated T cells, exhibiting similar side-effects. Diabetes is observed more often in FK506 than CsA therapy, probably due to inhibition of new molecular targets other than CaN. We studied FK506 toxicity in mammalian cells. FK506, but not CsA, regulated p38 activation by osmotic stress, and decreased viability in osmostressed cells. In addition, FK506 treatment strongly increased the phosphorylation of the eukaryotic initiation factor-2a (eIF-2a) subunit. eIF-2a phosphorylation, p38 inhibition and cell lethality were relieved by addition of excess amino acids to the medium, suggesting that amino acid availability mediated FK506 toxicity. Therefore, these FK506-dependent responses could be relevant to the non-therapeutic effects of FK506 therapy.Received 16 October 2003; received after revision 8 January 2004; accepted 14 January 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号