首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many plants use day length as an environmental cue to ensure proper timing of the switch from vegetative to reproductive growth. Day-length sensing involves an interaction between the relative length of day and night, and endogenous rhythms that are controlled by the plant circadian clock. Thus, plants with defects in circadian regulation cannot properly regulate the timing of the floral transition. Here we describe the gene EARLY FLOWERING 4 (ELF4), which is involved in photoperiod perception and circadian regulation. ELF4 promotes clock accuracy and is required for sustained rhythms in the absence of daily light/dark cycles. elf4 mutants show attenuated expression of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), a gene that is thought to function as a central oscillator component. In addition, elf4 plants transiently show output rhythms with highly variable period lengths before becoming arrhythmic. Mutations in elf4 result in early flowering in non-inductive photoperiods, which is probably caused by elevated amounts of CONSTANS (CO), a gene that promotes floral induction.  相似文献   

2.
An Arabidopsis circadian clock component interacts with both CRY1 and phyB   总被引:17,自引:0,他引:17  
Jarillo JA  Capel J  Tang RH  Yang HQ  Alonso JM  Ecker JR  Cashmore AR 《Nature》2001,410(6827):487-490
  相似文献   

3.
O Van Reeth  F W Turek 《Nature》1989,339(6219):49-51
A number of environmental and pharmacological stimuli capable of inducing phase shifts and/or period changes in the circadian clock of mammals have now been identified. Agents that can alter circadian clocks provide a means for investigating the cellular and neural mechanisms responsible for their generation, regulation and entrainment. Two stimuli that have been used to probe the basis of circadian rhythmicity are pulses of darkness on a background of constant light and injections of short-acting benzodiazepines, such as triazolam. Surprisingly, these two very different stimuli have remarkably similar phase-shifting effects on the circadian clock of hamsters. The observation that a short-term increase in locomotor activity occurs when the circadian activity rhythm of hamsters is shifted by dark pulses or triazolam injections, coupled with the finding that activity bouts themselves are capable of shifting this rhythm, raises the possibility that dark pulses or triazolam alter the circadian clock by inducing acute hyperactivity. Here we demonstrate that the phase-advancing and phase-delaying effects of dark pulses or triazolam on the circadian activity rhythm can be totally suppressed by immobilization of the animals during treatment. These results indicate that behavioural events mediate the phase-shifting effects of both dark pulses and triazolam on the circadian activity rhythm and question present hypotheses regarding the pathways by which light-dark information and pharmacological agents influence circadian pacemakers.  相似文献   

4.
基于拟南芥的时间序列的基因组芯片数据,分析了植物生长的昼夜调节模式相关的基因表达规律,发现有2.4%的基因的日振幅达到了显著差异水平.从整体基因转录组水平分析,白天诱导表达的基因主要参与调控植物与环境之间的相互作用,而夜晚表达上调的基因主要参与调节植物的生长发育.此外,植物叶绿素和血红素的生物合成也受到了生物钟的调控.对整个基因组水平上生物钟核心震荡调节子CCA1/LHY和TOC1的共表达基因做了基因组水平上的扫描鉴定,得到了一些新的潜在的生物节律调节因子.这些结果为今后更为系统地完善植物的生物节律的调控网络提供了参考.  相似文献   

5.
Membrane model for the circadian clock   总被引:30,自引:0,他引:30  
D Njus  F M Sulzman  J W Hastings 《Nature》1974,248(444):116-120
  相似文献   

6.
植物的开花受到多条途径的控制,包括春化途径、赤霉素途径、自主途径和光周期途径。以拟南芥Columbia(Col.)生态型和拟南芥Fibrillins突变体(本研究所使用突变体为fbn8和fbn1a)为研究对象,以杂交的方法获得fbn1a /fbn8双重突变体。文章对Fibrillins突变体在不同的环境下FBN1a、 FBN8对开花时间调节的可能机制进行初步探究。本研究发现,Fibrillins突变体在长日照、短日照条件下均为早花,并且fbn1a /fbn8双重突变体早花现象更为明显。说明FBN1a、FBN8有可能共同在开花途径中起到作用。通过连续对突变体开花基因的检测发现,和单突变体相比,fbn1a /fbn8双重突变体中的FT、SOC1、CO的基因表达量都大幅度增加,其中FT增加的更为明显,FLC减少也更为明显。而与野生型相比较,这种现象单突变体fbn1a又要比fbn8更为明显。最后,通过检测了植株体内H2O2含量的变化发现,与野生型比较fbn8、fbn1a和 fbn1a /fbn8体内H2O2含量升高程度为20%、30%、50%。由实验结果推测Fibrillins可能通过影响体内H2O2含量变化来参与开花时间的改变。  相似文献   

7.
8.
T Roenneberg  H Nakamura  J W Hastings 《Nature》1988,334(6181):432-434
The circadian clock is considered to be a universal feature of eucaryotic organisms, controlling the occurrence and rates of many different aspects of life, ranging from single enzymatic reactions and metabolism to complex behaviours such as activity and rest. Although the nature of the underlying cellular/biochemical oscillator is still unknown, many substances are known to influence either phase or period of circadian rhythms in different organisms. These include D2O, electrolytes and ion channel inhibitors, small organic molecules such as alcohols and aldehydes, inhibitors of protein synthesis and amino-acid analogues. Certain transmitter and neurochemical drugs also influence the circadian clock in higher animals. We report here that the period of free-running circadian rhythms in the unicellular marine alga Gonyaulax polyedra is shortened by extracts from mammalian cells. The effect is dose-dependent, accelerating the circadian clock by as much as 4 hours per day. The substance responsible for this effect has been isolated from bovine muscle and identified as creatine. Authentic creatine has identical biological effects at micromolar concentrations and is known in animal systems for its involvement in cellular energy metabolism. A period shortening substance with similar chemical properties is also present in extracts of Gonyaulax itself.  相似文献   

9.
Chabot JR  Pedraza JM  Luitel P  van Oudenaarden A 《Nature》2007,450(7173):1249-1252
Recent advances in measuring gene expression at the single-cell level have highlighted the stochastic nature of messenger RNA and protein synthesis. Stochastic gene expression creates a source of variability in the abundance of cellular components, even among isogenic cells exposed to an identical environment. Recent integrated experimental and modelling studies have shed light on the molecular sources of this variability. However, many of these studies focus on systems that have reached a steady state and therefore do not address a large class of dynamic phenomena including oscillatory gene expression. Here we develop a general protocol for analysing and predicting stochastic gene expression in systems that never reach steady states. We use this framework to analyse experimentally stochastic expression of genes driven by the Synechococcus elongatus circadian clock. We find that, although the average expression at two points in the circadian cycle separated by 12 hours is identical, the variability at these two time points can be different. We show that this is a general feature of out-of-steady-state systems. We demonstrate how intrinsic noise sources, owing to random births and deaths of mRNAs and proteins, or extrinsic noise sources, which introduce fluctuations in rate constants, affect the cell-to-cell variability. To distinguish experimentally between these sources, we measured how the correlation between expression fluctuations of two identical genes is modulated during the circadian cycle. This quantitative framework is generally applicable to any out-of-steady-state system and will be necessary for understanding the fidelity of dynamic cellular systems.  相似文献   

10.
Etchegaray JP  Lee C  Wade PA  Reppert SM 《Nature》2003,421(6919):177-182
  相似文献   

11.
Salter MG  Franklin KA  Whitelam GC 《Nature》2003,426(6967):680-683
The phytochromes are a family of plant photoreceptor proteins that control several adaptive developmental strategies. For example, the phytochromes perceive far-red light (wavelengths between 700 and 800 nm) reflected or scattered from the leaves of nearby vegetation. This provides an early warning of potential shading, and triggers a series of 'shade-avoidance' responses, such as a rapid increase in elongation, by which the plant attempts to overgrow its neighbours. Other, less immediate, responses include accelerated flowering and early production of seeds. However, little is known about the molecular events that connect light perception with increased growth in shade avoidance. Here we show that the circadian clock gates this rapid shade-avoidance response. It is most apparent around dusk and is accompanied by altered expression of several genes. One of these rapidly responsive genes encodes a basic helix-loop-helix protein, PIL1, previously shown to interact with the clock protein TOC1 (ref. 4). Furthermore PIL1 and TOC1 are both required for the accelerated growth associated with the shade-avoidance response.  相似文献   

12.
13.
Pennartz CM  de Jeu MT  Bos NP  Schaap J  Geurtsen AM 《Nature》2002,416(6878):286-290
The central biological clock of the mammalian brain is located in the suprachiasmatic nucleus. This hypothalamic region contains neurons that generate a circadian rhythm on a single-cell basis. Clock cells transmit their circadian timing signals to other brain areas by diurnal modulation of their spontaneous firing rate. The intracellular mechanism underlying rhythm generation is thought to consist of one or more self-regulating molecular loops, but it is unknown how these loops interact with the plasma membrane to modulate the ionic conductances that regulate firing behaviour. Here we demonstrate a diurnal modulation of Ca2+ current in suprachiasmatic neurons. This current strongly contributes to the generation of spontaneous oscillations in membrane potential, which occur selectively during daytime and are tightly coupled to spike generation. Thus, day-night modulation of Ca2+ current is a central step in transducing the intracellular cycling of molecular clocks to the rhythm in spontaneous firing rate.  相似文献   

14.
F W Turek  S Losee-Olson 《Nature》1986,321(6066):167-168
Between 5 and 20% of the adult population in Western countries suffer from insufficient and/or unsatisfying sleep, often associated with certain psychiatric disorders or with certain types of professional activities (for example, shift workers) and travel schedules (for example, jet lag). The benzodiazepines are at present the drug treatment of choice for the management of anxiety and stress-related conditions as well as insomnia. Benzodiazepines are thought to act by potentiating the action of the neurotransmitter gamma-aminobutyric acid (GABA), a widely distributed transmitter in the central nervous system. The circadian system has a key role in the regulation of the sleep-wake cycle, and at least some forms of insomnia may be the result of a disorder of the circadian sleep-wake rhythm. Similarly, at least some forms of depression may also involve disruption of normal circadian rhythmicity. A central pacemaker for the generation of many circadian rhythms in mammals, including the sleep-wake cycle, appears to be located in the suprachiasmatic nucleus, and recent research indicates that both cell bodies and axons containing GABA are present within the bilaterally paired suprachiasmatic nuclei. These findings raise the possibility that the benzodiazepines, commonly prescribed for sleep and mental disorders, may have an effect on the central circadian pacemaker. Here we report that the acute administration of triazolam, a short-acting benzodiazepine commonly prescribed for the treatment of insomnia, induces a phase-shift in the circadian rhythm of locomotor activity in golden hamsters. This suggests a role for GABA-containing neurones in the mammalian circadian system.  相似文献   

15.
M Merrow  M Brunner  T Roenneberg 《Nature》1999,399(6736):584-586
Circadian clocks consist of three elements: entrainment pathways (inputs), the mechanism generating the rhythmicity (oscillator), and the output pathways that control the circadian rhythms. It is difficult to assign molecular clock components to any one of these elements. Experiments show that inputs can be circadianly regulated and outputs can feed back on the oscillator. Mathematical simulations indicate that under- or overexpression of a gene product can result in arrhythmicity, whether the protein is part of the oscillator or substantially part of a rhythmically expressed input pathway. To distinguish between these two possibilities, we used traditional circadian entrainment protocols on a genetic model system, Neurospora crassa.  相似文献   

16.
A role for casein kinase 2alpha in the Drosophila circadian clock   总被引:15,自引:0,他引:15  
Lin JM  Kilman VL  Keegan K  Paddock B  Emery-Le M  Rosbash M  Allada R 《Nature》2002,420(6917):816-820
  相似文献   

17.
The ELF3 zeitnehmer regulates light signalling to the circadian clock   总被引:24,自引:0,他引:24  
McWatters HG  Bastow RM  Hall A  Millar AJ 《Nature》2000,408(6813):716-720
The circadian system regulates 24-hour biological rhythms and seasonal rhythms, such as flowering. Long-day flowering plants like Arabidopsis thaliana, measure day length with a rhythm that is not reset at lights-off, whereas short-day plants measure night length on the basis of circadian rhythm of light sensitivity that is set from dusk, early flowering 3 (elf3) mutants of Arabidopsis are aphotoperiodic and exhibit light-conditional arrhythmias. Here we show that the elf3-7 mutant retains oscillator function in the light but blunts circadian gating of CAB gene activation, indicating that deregulated phototransduction may mask rhythmicity. Furthermore, elf3 mutations confer the resetting pattern of short-day photoperiodism, indicating that gating of phototransduction may control resetting. Temperature entrainment can bypass the requirement for normal ELF3 function for the oscillator and partially restore rhythmic CAB expression. Therefore, ELF3 specifically affects light input to the oscillator, similar to its function in gating CAB activation, allowing oscillator progression past a light-sensitive phase in the subjective evening. ELF3 provides experimental demonstration of the zeitnehmer ('time-taker') concept.  相似文献   

18.
Analysis of the genome sequence of the flowering plant Arabidopsis thaliana   总被引:16,自引:0,他引:16  
The flowering plant Arabidopsis thaliana is an important model system for identifying genes and determining their functions. Here we report the analysis of the genomic sequence of Arabidopsis. The sequenced regions cover 115.4 megabases of the 125-megabase genome and extend into centromeric regions. The evolution of Arabidopsis involved a whole-genome duplication, followed by subsequent gene loss and extensive local gene duplications, giving rise to a dynamic genome enriched by lateral gene transfer from a cyanobacterial-like ancestor of the plastid. The genome contains 25,498 genes encoding proteins from 11,000 families, similar to the functional diversity of Drosophila and Caenorhabditis elegans--the other sequenced multicellular eukaryotes. Arabidopsis has many families of new proteins but also lacks several common protein families, indicating that the sets of common proteins have undergone differential expansion and contraction in the three multicellular eukaryotes. This is the first complete genome sequence of a plant and provides the foundations for more comprehensive comparison of conserved processes in all eukaryotes, identifying a wide range of plant-specific gene functions and establishing rapid systematic ways to identify genes for crop improvement.  相似文献   

19.
Recent findings on neural and endocrine rhythms in infant mice and rats show that maternal coordination has an important role in setting the phase of the developing circadian clock both in the fetus and soon after birth. However, less information is available about the influence of the mother on activity/rest cycles of infants. Separation of the mother from infants in guinea pigs, monkeys and rats results in an increase in sleep disturbance (enhanced activity?). In this context it may be a common feature that during the postnatal period there is enhanced activity of pups during the hours when the mother is not nearby. Conversely, the social influences exerted by the mother while present with her young possibly leads to a relative rest stage. We have now tested this assumption in the night-active mouse Mus booduga. Our study addressed the postulate that the circadian activity/rest cycles of the pups are controlled by cyclic(?) presence and absence of the mother. The results reported here clearly indicate that the circadian locomotor activity of pups kept under continuous illumination or continuous darkness do entrain them to a regime of imposed 12:12-h cyclic presence and absence of the mother. The characteristics of this entrainment confer on the mother mouse the role of zeitgeber.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号