共查询到20条相似文献,搜索用时 15 毫秒
1.
设A是Hilbert空间H上维数大于1的因子von Neumann代数. 利用代数分解的方法证明: 如果非线性映射: A →A满足对任意的[JP2]A,B,C∈A, 有(A·B·C)=(A)·B·C+[JP]A·(B)·C+A·B·(C), 则是可加的*-导子. 相似文献
2.
3.
设M是Hilbert空间H上维数大于1的因子von Neumann代数,用代数分解方法证明了:如果非线性映射δ:M→M满足对任意的A,B,C∈M且ABC=0,有δ([[A,B],C])=[[δ(A),B],C]+[[A,δ(B)],C]+[[A,B],δ(C)],则存在可加导子d:M→M,使得对任意的A∈M,有δ(A)=d(A)+τ(A)I,其中τ:M→瓘I是一个非线性映射,满足对任意的A,B,C∈M且ABC=0时,有τ([[A,B],C])=0. 相似文献
4.
张芳娟 《山东大学学报(理学版)》2020,55(7):32-37
设R是维数大于1的因子von Neumann代数.对于给定的复数ξ且ξ≠0,如果映射δ:R→R满足对所有A,B∈R,有δ((A·B)ξ)=(δ(A)·B)ξ+(A·δ(B))ξ,那么δ是可加的-导子且满足δ(ξA)=ξδ(A).特别地,若von Neumann代数R是无限的Ⅰ型因子,给出了δ的具体刻画. 相似文献
5.
《陕西师范大学学报(自然科学版)》2015,(6)
证明了无非零中心理想von Neumann代数上的Jordan双导子是内双导子。作为应用,给出了无非零中心理想von Neumann代数中所有自伴算子构成的实Jordan代数上Jordan双导子的具体结构。 相似文献
6.
给出了von Neumann代数上的保反零积(或,双边保反零积)及保三重Jordan零积(或,双边保三重Jordan零积)的刻画,从而进一步加深了对von Neumann代数内部结构的理解. 相似文献
7.
设m,n是任意非零整数,且满足(m+n)(m-n)≠0, M是实或复数域F上的Hilbert空间上的一个因子von Neumann代数.利用代数分解方法证明了M上满足2mφ(AB)+2nφ(BA)=mφ(A)B+mAφ(B)+nφ(B)A+nBφ(A)的非线性映射φ为可加中心化子,并刻画出具体形式φ:A→λA(λ∈F, A∈M). 相似文献
8.
在因子von Neumann代数Μ上给出了非线性~*-Jordan三重导子的定义,利用代数Pierce分解方法,证明了φ:Μ→Μ是非线性~*-Jordan导子当且仅当φ是非线性~*-Jordan三重导子. 相似文献
9.
设M是作用在维数大于2的复可分Hilbert空间上的因子von Neumann代数,并且Φ是从M到自身的线性双射。证明了映射Φ满足对任意A,B∈M AB=BA*蕴含Φ(A)Φ(B)=Φ(B)Φ(A)*当且仅当存在非零实数λ和M上的*-自同构Ψ使得对任意A∈M,有Φ(A)=λΨ(A)。 相似文献
10.
《南京师大学报(自然科学版)》2016,(4)
设A是复Hilbert空间H上的一个von Neumann代数,P(A)表示A中投影的全体.本文证明了连续满射Φ:A→A如果满足A+λB∈P(A)Φ(A)+λΦ(B)∈P(A),A,B∈A和λ∈C,则Φ是A上的一个Jordan同构. 相似文献
11.
设m和n是任意固定的非零整数,且(m+n)(m-n)≠0,M是一个因子von Neumann代数,δ是M上的一个映射(没有可加性或连续性假设).用矩阵分块方法证明了:若对任意的A,B∈M,有mδ(AB)+nδ(BA)=mδ(A)B+mAδ(B)+nδ(B)A+nBδ(A),则δ是一个可加导子. 相似文献
12.
《云南大学学报(自然科学版)》2017,(5)
设A,B是因子von Neumann代数且pn(A_1,A_2,…,A_n)为多重新积,则非线性双射Φ:A→B满足Φ(p_n(A_1,A_2,…,A_n))=p_n(Φ(A_1),Φ(A_2),…,Φ(A_n))当且仅当Φ是*-环同构. 相似文献
13.
从有限von Neumann代数的任意含0,±I的子集到该代数的以±I为不动点的每个完全迹秩不增(完全保迹秩)映射都可以延拓为该子集生成的子环上的可加可乘(单)映射,即(单射)环同态。特别地,矩阵代数上的以±I为不动点的完全秩不增映射必是环同态。 相似文献
14.
运用算子论方法研究因子von Neumann代数上的P点*-Lie导子.设M是Hilbert空间H(dimH≥2)上的因子von Neumann代数,证明了线性映射ф:M→M对所有的A,B∈M都有AB=P(P是一个固定的非平凡投影),如果满足ф([A,B]*)=[ф(A),B]*+[A,ф(B)]*,则ф是*-导子,其中[A,B]=AB-BA,[A,B]*=AB-BA*. 相似文献
15.
设M和N是两个von Neumann代数, 其中至少有一个无中心交换投影, η∈�,1}, 非线性双射:M→N 满足对所有A,B,C∈M, 有([A,B]*(η)·ηC)=[(A),(B)]*(η)·η(C).若η=-1,则(I)是线性*-同构和共轭线性*-同构之和, 其中(I)是N中自伴中心元且(I)2=I; 若η≠-1, 满足(I)=I, (iI)*=-(iI), 则下列结论成立: 1)若|η|=1, 则是线性*-同构; 2)若|η|≠1,则是线性*-同构和共轭线性*-同构之和. 相似文献
16.
设A和B是Jordan代数, 如果双射:A→B满足任给a,b,c∈A都有({abc})={(a)(b)(c)}, 则称为Jordan三元映射。如果A含有一个非平凡幂等p,且A对于p的Peirce分解A=A1A12A0满足(1)设ai∈Ai(i=1,0),如果任给t12∈A12都有ait12=0,则ai=0,则从A到B上的Jordan三元映射是可加的。 相似文献
17.
设M是复Hilbert空间H上的von Neumann代数,该文主要刻划了von Neumann代数M上的在零点(单位)广义反可导的范数连续的线性映射是M上的广义内导子. 相似文献
18.
三角代数上一类局部非线性三重高阶可导映射 总被引:2,自引:1,他引:2
对Lehmann和Rojo给出的关于各种随机序关系的定理作
进一步推广; 说明有序总体的同阶次序统计量仍保持序关系; 证明序关系在单调变换下不
变性和散度序关系在凸函数作用下的不变性. 相似文献
19.
设U是一个2-无挠的三角代数,Ω={x∈U:x~2=0},■是U上一列映射(无可加性假设).用代数分解方法证明:若对任意的■,x,y,z∈U且xyz∈Ω,有■,则D是一个高阶导子. 相似文献
20.
张芳娟 《山东大学学报(理学版)》2022,57(10):92-96
令η∈C{0,-1},设φ是两个因子上的不必为线性的双射并且满足φ(I)=I,如果φ保持混合三重η-积,那么当η不是实数时φ是线性*-同构;当η是实数时φ是线性*-同构或共轭线性*-同构。 相似文献