首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
制备了以Li2SO4为基体的复合质子传导膜。采用电化学阻抗波谱分析法(EIS)研究了掺杂不同组分如Li2WO4、Na2SO4和Al2O3、以及掺杂不同的比例时制备不同厚度的复合质子传导膜的离子(电)传导率。在Li2SO4中掺杂适宜比例的Li2WO4或Na2SO4可提高膜的离子传导率,掺杂Li2WO4比掺杂Na2SO4制备的复合膜具有更高的离子传导率和较佳的性能。虽然掺杂Al2O3会稍微降低膜的质子传导率,但确可以提高膜的机械性能。膜的厚度减少,其离子传导率增加,但膜太薄,气体容易从膜一侧渗透到另一侧(crossover)。采用扫描电镜(SEM)对复合膜进行了表征,掺杂Li2WO4制备的复合膜结构较致密和紧凑、性能较好。实验结果表明,适宜的膜厚为0.8mm,由Li2SO4、Li2WO4和Al2O3制备的复合膜适宜的组成为75wt%(90mol%Li2SO4+10mol%Li2WO4)+25wt%Al2O3,其离子传导率在600、650、700和750℃时高达0.16、0.38、0.46和0.52Scm1。研究了以H2S为燃料、复合Mo-Ni-S为阳极、复合Li2SO4为质子传导膜、复合NiO为阴极、空气作为氧化剂的单电池的电化学性能,Li2SO4+Li2WO4+Al2O3复合膜的电池性能较优。  相似文献   

2.
复合Li2SO4质子传导膜的制备及电化学性能   总被引:1,自引:1,他引:0  
制备了以Li2SO4为基体、Al2O3为填充物的复合质子传导膜.采用电化学阻抗波谱分析法(EIS)研究了掺杂不同组分(Li2WO4或Na2SO4)以及掺杂不同比例时制备的不同厚度的复合质子传导膜的离子(电)传导率.分析结果表明,在Li2SO4中掺杂一定比例的Li2WO4或Na2SO4均可提高膜的离子传导率,Li2WO4对复合膜性能的影响优于Na2SO4.扫描电镜(SEM)分析显示,掺杂Li2WO4的复合膜结构更加致密和紧凑.实验结果表明,由Li2SO4、Li2WO4和Al2O3制备的复合膜的适宜组成为75%Li2SO4/Li2WO4混合物(Li2SO4与Li2WO4摩尔比为9: 1) 25%Al2O3,其离子传导率在600,650,700和750 ℃时分别高达0.16,0.38,0.46和0.52 S/cm,适宜的膜厚为0.8 mm.文中还研究了以H2S为燃料、复合Mo-Ni-S为阳极、复合Li2SO4为质子传导膜、复合NiO为阴极、空气为氧化剂的单电池的电化学性能,发现Li2SO4 Li2WO4 Al2O3复合膜的电化学性能较优.  相似文献   

3.
中温质子传导膜H2S燃料电池电极催化剂   总被引:2,自引:2,他引:0  
研究了基于三相边界层理论设计的中温质子传导膜H2S燃料电池的阳极与阴极催化剂.考察了3种阳极催化剂Pt、MoS2及复合金属硫化物(MoS2/N iS)电化学氧化硫化氢的性能和在硫化氢环境下的化学稳定性,发现MoS2和复合MoS2/N iS催化剂比Pt具有更好的催化活性,但MoS2在温度超过450℃时会升华,而含有Mo和过渡金属N i的复合MoS2/N iS催化剂在操作条件下很稳定.文中还研究了两种阴极催化剂Pt与复合N iO催化剂的电化学性能,发现复合N iO催化剂比Pt电极具有更低的过电位和更好的电化学性能;虽然复合电极的导电性比Pt差些,但是这一问题可以通过在电极中掺杂10%的Ag粉解决.由H2S、(MoS2 N iS Ag 电解质 淀粉)/Li2SO4-A l2O3/(N iO Ag 电解质 淀粉)、空气构成的燃料电池在101.13 kPa和600~680℃下的电化学特性研究表明,电池最大输出电流密度和功率密度在680℃时分别达到240mA/cm2和70mW/cm2.  相似文献   

4.
采用溶胶-凝胶法制备了纳米级Li2SO4+Li2WO4+Al2O3复合质子传导膜,考察了在不同H2S气体含量、体积流量和操作温度下,结构为H2S、(复合MoS2阳极催化剂)/复合质子传导膜/(复合NiO阴极催化剂)、空气的燃料电池的电化学特性,并比较了MoS2与复合MoS2催化剂的性能.结果表明:H2S含量和体积流量增加,提高了阳极侧气体扩散速率和电化学活性组分,使燃料电池的电压、输出电流与功率密度提高,电化学性能变好;即使气体中的H2S含量低达5%(摩尔分数)时,也可作为电池的燃料用来发电;操作温度增加,质子传导膜的电传导率和电化学反应速率增加,电池的输出电流与功率密度提高;复合MoS2催化剂比MoS2催化剂具有更好的性能和化学稳定性;当采用纯H2S作为燃料,复合MoS2作为阳极催化剂,通入阳极和阴极侧的H2S和空气的体积流量分别为35mL/min和100mL/min,操作温度为650、700和750℃时,燃料电池最大输出功率密度分别为12.4、52.9和130.0mW/cm2,最大电流密度分别为45、281和350mA/cm2.  相似文献   

5.
目的探究高温酸化时在酸化剂中加入不同含量的H2SO4对PBI膜和高温燃料电池电极的影响.方法质子交换膜是高温质子交换膜(HT-PEM)燃料电池的核心部件,对燃料电池的性能起到主导作用.笔者制备了酸化剂中掺杂不同量H2SO4的PBI膜,测试了高温PBI燃料电池的I-V特性和交流阻抗特性,对比了PBI膜表面SEM照片的差异,分析了高温PBI膜掺杂硫酸的含量和电池温度对高温燃料电池性能的影响.结果研究发现:高温PEM燃料电池的PBI膜在高温酸化时及高温燃料电池运行时,H2SO4的强氧化性起主导作用,破坏了PBI膜的内部结构,阻碍了质子的传递,对PBI膜和燃料电池电极均有损伤.结论酸化剂中掺杂强电解质强氧化性的H2SO4不利于高温PBI膜燃料电池性能的提高,虽然常温下经H2SO4处理后的PBI膜的电导率能够显著提高,但高温运行的PBI膜燃料电池的性能有明显下降.H2SO4的加入对PBI膜的电导率没有明显的提升,反而对高温燃料电池的性能有所抑制.掺杂强电解质H2SO4对提升电池性能是不合适的.  相似文献   

6.
采用溶胶—凝胶法制备了纳米级Li2SO4+Li2WO4+Al2O3复合质子传导膜,研究了不同H2S气体浓度、流率和操作温度对结构为H2S、(复合MoS2阳极催化剂)/ 复合质子传导膜/(复合NiO阴极催化剂)、空气的燃料电池电化学性能影响。燃料电池的性能与通入阳极侧的H2S浓度和流率有关,H2S浓度和流率增加,提高了阳极侧气体扩散速率和电化学活性组分,使燃料电池的开路电压、输出电流与功率密度提高,电化学性能变好。即使气体中的H2S浓度低达5%时,该气体也可作为电池的燃料并用来发电。操作温度增加,质子传导膜的电传导率和电化学反应速率增加,电池的输出电流与功率密度提高。比较了MoS2与复合MoS2催化剂的性能,复合MoS2催化剂比MoS2催化剂具有更好的性能和化学稳定性。当采用纯H2S作为燃料,通入阳极和阴极侧的H2S和空气的流率分别为35mlmin-1和100mlmin-1,操作温度为650、700和750oC时,燃料电池产生的最大功率密度为12.4、52.9和130 mWcm-2、最大电流密度为45、281和350 mAcm-2。  相似文献   

7.
以Li2SO4和Ce0.9Ca0.1O1.9为原料,混合制成复合电解质.实验表明,Li2SO4Ce0.9Ca0.1O1.9复合电解质在中温区(500~650℃)具有较高的导电率,以此材料制成的燃料电池的开路电压可达1.0v左右,明显高于以Ce0.9Ca0.1O1.9为电解质的燃料电池的开路电压,在550℃左右具有10mW/cm2以上的最大输出功率密度,但在更高的温度下性能有所下降,且电极性能尚待改进.  相似文献   

8.
以 Li2 SO4 和 Ce0 .9Ca0 .1O1.9为原料 ,混合制成复合电解质 .实验表明 ,Li2 SO4 -Ce0 .9Ca0 .1O1.9复合电解质在中温区 (50 0~ 650℃ )具有较高的导电率 ,以此材料制成的燃料电池的开路电压可达 1 .0 V左右 ,明显高于以 Ce0 .9Ca0 .1O1.9为电解质的燃料电池的开路电压 ,在 550℃左右具有 1 0 m W/cm2 以上的最大输出功率密度 ,但在更高的温度下性能有所下降 ,且电极性能尚待改进 .  相似文献   

9.
开发了一种制备纳米复合Li_2SO_4质子传导电解质和膜电极组装(MEA)的工艺.与传统的丝网涂布工艺不同,新的制备工艺是将阳极、阴极催化剂与纳米复合电解质同时一次压制成MEA.这就使得MEA的设计具有某些结构上的特点,由于膜厚减少和电极与电解质之间的接触良好,可以降低电解质与电极之间的欧姆电阻,提高其机械和导电性能,增加膜的质子传导性以及改善电池的性能.用电子扫描电镜(SEM)和电化学阻抗分析技术对电解质薄膜进行了表征,结果表明,纳米复合材料改善了MEA的总体性能.由于膜的致密性和不透气性,不会发生气体穿透过膜的现象.MEA在H_2S环境中很稳定.电池结构为H_2S,(MoS_2/NiS Ag 电解质量 淀粉) /Li_2SO_4 Al_2O_3/(NiO Ag 电解质量 淀粉),空气、MEA厚为0.8mm、电解质组成为65% Li_2SO_4 35% Al_2O_3的单电池在680℃时产生最大功率密度为130mW/cm~2,相应的电流密度为200mW/cm~2.  相似文献   

10.
采用甘氨酸-硝酸盐燃烧法合成阳极材料NiO以及阴极材料La0.8Sr0.2MnO3(LSM).将电解质8mol%钇稳定氧化锆(YSZ)和掺有4wt% Al2O3的YSZ压片后在1450℃烧结4h.在掺有氧化铝电解质的阳极侧涂刷过渡层后于1200℃烧结1h.以加湿氢气(含3%体积比H2O)为燃料,环境空气为氧化剂,测试了三种电池的输出性能和交流阻抗谱.结果表明:850℃时,含Al2O3的电解质输出性能最差,输出功率约为83mW/cm2.含Al2O3并具有过渡层的电池输出性能最好,输出功率约为120mW/cm2.通过交流阻抗谱分析,后者电池的欧姆电阻与界面电阻均比前者明显减小.表明YSZ中添加的Al2O3在高温烧结过程中,与阳极材料NiO发生反应生成不导电的镍铝尖晶石.过渡层的使用,不仅保留了Al2O3对电解质的贡献,也抑制了不导电的镍铝尖晶石的生成.  相似文献   

11.
一种以H2S为燃料的固体氧化物燃料电池   总被引:3,自引:3,他引:0  
研究了在一个大气压和750~850℃下,具有H2S、(MoS2 NiS Ag)/YSZ/Pt和空气结构的固体氧化物燃料电池的电化学性能,发现升温有助于增强电解质的离子传导性,使电池性能变好.在750℃下,阳极通入H2S、阴极通入空气时,电池的最大电流密度和最大功率密度分别达800mA/cm^2和84mW/cm^2;在850℃下,电池的最大电流密度和功率密度分别达1750mA/cm^2和200mW/cm^2.  相似文献   

12.
Li2 CO3 和MnCO3 中加入少量柠檬酸或草酸 ,在 5 5 0~ 75 0℃间 ,焙烧 6~ 10h制备了LiMn2 O4 。用TG/DTA ,XRD ,TEM对样品的结构和性质进行了研究。发现在 6 5 0℃焙烧 6h制备的样品具有完整的尖晶石结构 ,样品的平均粒度为 40nm  相似文献   

13.
为了最大化浸出废锂电池中钴锂金属元素,固定浸出时间,采用全因子实验方法,以氨基磺酸浓度、过氧化氢质量分数、固液比、浸出温度为自变量,Co2+和Li+浸出率为因变量进行模型拟合,应用Minitab 17软件对工艺参数模型进行预测,并对最佳工艺参数进行验证。结果表明,主效应上,氨基磺酸浓度、过氧化氢质量分数、固液比、浸出温度对Co2+和Li+浸出率有显著的影响;交互效应上,氨基磺酸浓度+固液比、过氧化氢质量分数+浸出温度对Co2+浸出率有明显的影响,氨基磺酸浓度+浸出温度、过氧化氢质量分数+浸出温度、固液比+浸出温度对Li+浸出率有一定影响,其余效应影响不显著。所得最佳工艺参数为:c(NH2SO3H)=144 mol·L-1,w(H2O2)=10%,S/L=25 g·L-1,θ=55 ℃,t=70 min,在此浸出条件下,Co2+和Li+浸出率分别为9531%和9236%。  相似文献   

14.
在SO2 -4 /TiO2 固体超强酸中引入适量Al2 O3 ,制备成SO2 -4 /TiO2 Al2 O3 ,用于催化环己醇分子内脱水反应 .研究结果表明 ,SO2 -4 /TiO2 Al2 O3 对反应有较强催化作用 ,Al2 O3 的含量、催化剂用量、反应时间等都对反应产率有影响 .催化剂易与产物分离 ,能重复使用 ,且不对环境造成污染  相似文献   

15.
利用公式△H=-0.1196n/λ计算了S、H2S及CS2在氧气中燃烧反应的火焰温度,并推测了三种物质燃烧反应的机理.S在氧气中燃烧反应的火焰温度计算值为2086 K,与测定值2093K接近,误差为-0.30%.H2S在氧气中燃烧反应的火焰温度计算值为2238K,测定温度2383K,误差为-6.1%.CS2在氧气中燃烧反应的火焰温度计算值为2502K,测定温度2468K,误差为0.14%.根据燃烧反应的火焰温度,推测S、H2S及CS2在氧气中燃烧反应机理.S燃烧反应机理为:(1)O2+ hv→2O·,(2)S +O·→SO+hv,(3)2SO+O2→2SO2,(4)SO2+O·→SO3 +hv.H2S燃烧反应机理为:(1)O2+ hv→2O·,(2) H2S→H2 +S,(3)H2 +O·→H2O+hv,(4)S+O·→SO+hv,(5) 2SO+ O2→2SO2,(6)SO2 +O·→SO3+ hv.CS2燃烧反应机理为:(1)O2+hv→2O·,(2) CS2→C +2S,(3)C+O·→CO+ hv,(4)CO+O·→CO+hv,(5)S+O·→SO+ hv,(6)2SO+ O2→2SO2,(7)SO2+O·→SO3+ hv.  相似文献   

16.
纳米SiC增强铝合金表面阳极氧化膜的组织与性能   总被引:3,自引:0,他引:3  
以硫酸、草酸、氨基磺酸为基础电解液,分别添加3,8,12,15 g/L的纳米SiC颗粒,利用直流氧化电源在优化的复合共沉积工艺参数下,在2024铝合金表面制备纳米SiC增强的硬质阳极氧化膜.结果表明:纳米SiC颗粒弥散分布在阳极氧化膜中,形成了纳米颗粒增强的硬质Al2O3氧化膜组织结构;随着纳米SiC添加量的增加,膜的厚度由没有添加纳米SiC颗粒的42μm增加到了48μm;当SiC的添加量为12 g/L时,氧化膜的硬度最高而磨耗最低,硬度由没有添加纳米颗粒样品的400 HV左右提高到了440 HV,磨损量由25 mg降到8 mg;纳米SiC在阳极氧化过程中,通过机械夹杂、吸附作用等形式进入膜层...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号