首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
设G=(V,E)是一个具有n个顶点的简单图,A(G)是G的邻接矩阵,D(G)表示G的度对角矩阵,图G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).若矩阵L(G)的特征值为μ1≥μ2≥…≥μn-1≥μn=0,则称μn-1为G的代数连通度.研究了正则图的代数连通度,得到了下列结论:μn-1≤(nrln(n-l))/(6n-8-4r-nln(n-1))这里,r表示正则图的度.  相似文献   

2.
给定最大度的树的代数连通度   总被引:1,自引:0,他引:1  
研究给定最大度的树在移接变形下的代数连通度的变化.这些结果可以用来刻画给定最大度和顶点个数的树中具有最小代数连通度的极图,并且给出了该极图的代数连通度的一个下界.  相似文献   

3.
G是一个简单图.a(G),k(G)分别为G的代数连通度和点连通度,该文刻画了满足a(G)=k(G)的图.G=(V,E)是一个n阶简单图,点连通度为k(G)≤[n/2].H是G的任意最小点割集,则a(G)=k(G)当且仅当对任意u∈H和v∈V\H,有uv∈E.  相似文献   

4.
讨论了给定控制数的树的代数连通度的上界,并对极图给出了刻画.  相似文献   

5.
关于图的代数连通度的注记   总被引:3,自引:1,他引:3  
n阶连通图G的代数连通度、点连通度和边连通度分别记作α(G) ,κ(G)和λ(G) .本文给出了当 2 κ(G) n- 2时 ,α(G) =κ(G)成立的充要条件 ,讨论了α(G)的代数重数以及相应于特征值α(G)的特征向量的性质 .最后给出了当 1 λ(G) n- 2时 ,α(G) =λ(G)的充要条件 .  相似文献   

6.
Kp表示p阶完全图.选取Kp的任意r个顶点分别点粘接r棵树,得到n阶图Ln,p.所有n阶图Ln,p的集合记为(L)n,p.代数连通度是刻画图的连通性的重要参数,笔者分别确定了Ln,p中具有最大、最小和第二小代数连通度的图.  相似文献   

7.
对任一个n阶单图G,用a(G)表示G的代数连通度,Gc为G的补图.通过代数连通度与Laplacian谱半径的关系,给出了几类图的Nordhaus-Gaddum的代数连通度的和的界.  相似文献   

8.
讨论了树的代数连通度.利用移接变形给出树的代数连通度的一种变化关系,同时给出了两类树的代数连通度与直径的关系.  相似文献   

9.
对于连通图G,矩阵Q(G)=D(G) A(G)称为图G的拟拉普拉斯矩阵,其中D(G)为图的度对角矩阵,A(G)为图的邻接矩阵.本文利用矩阵的一些性质,推导出连通图的拟拉普拉斯谱半径的一个上界.并将该上界与已有的一些结论结合具体图例作了优越性比较.  相似文献   

10.
11.
循环图是一类重要的网络拓扑图.图的拉普拉斯矩阵谱,特别是图的代数连通度,在与网络相关的广泛领域(包括与网络有关的动力问题)中发挥重要作用.本文中,利用循环图的特征值理论,研究了循环图的代数连通度的下界问题,得到了代数连通度的两个下界.  相似文献   

12.
对任一个n阶单图G,用a(G)表示G的代数连通度,GC表示它的补图.针对双圈图,即边数等于顶点数加1的且只含有2个边不交的基本圈的简单连通图,证明了对任一n阶双圈图G,有1≤a(G)+a(GC),当且仅当G≌G1时等式成立.  相似文献   

13.
针对可预测生物和物理性质的图的不变量——离心率距离和,采用Tutte-Berge公式及图的转化方法,给出了图的给定匹配数的离心率距离和的紧下界,且完全确定了其极值图.  相似文献   

14.
对任一个凡阶单图G,用0(G)表示G的代数连通度,Gc表示它的补图.针对双圈图.即边数等于顶点数加1的且只含有2个边不交的基本圈的简单连通图,证明了对任一n阶双圈图G,有1≤a(G)+a(G^C),当且仅当3G兰G1时等式成立.  相似文献   

15.
图的完美匹配的计数问题是匹配理论研究中的一个重要课题,此问题与统计晶体物理中的dimmer问题有关.一般图的完美匹配计数问题是NP-难的.本文给出了几类图的完美匹配数的显式表达式.作为应用,计算出了一些图的Hamilton圈的数目.  相似文献   

16.
两个图G和H的匹配多项式相等,则称它们匹配等价.用δ(G)表示图G的所有不同构的匹配等价图的个数.计算了一些路的并图的匹配等价图的个数.首先将整数m(≥2)按它所含的最大奇因数分成3-系和2k(k=1.2,…)-系,再按它所含2的方幂分为级.设A是不小于2的整数组成的可重集,B_i(i=1,2,…,t)是同系整数构成的可重集,且A=B_1∪B_2∪…∪B_t,则δ(■P_i)=■δ(■P_i),若x∈B_i,y∈B_j(i≠j),则x与y是互不相同系的整数.设B={m_1~(k_1),m_2~(k_2),…,m_n~(k_n)}是同系整数构成的可重集,其中m_i(≥2)是第i级的,有k_i(≥0)个,则n =1,δ(■P_i)=1;n≥2,δ(■P_i)=sum from i_m-0 to k_n sum from i_(m-1)-0 to k_(n-1) i_m…sum from i_2-0 to k_2 i_3 1.作为推论,计算了路并补图的匹配等价图的个数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号