共查询到20条相似文献,搜索用时 0 毫秒
1.
为提高光伏功率预测精确度,提出一种基于经验模态分解(Empirical Mode Decomposition,EMD)-天鹰优化器(Aquila Optimizer,AO)-深度极限学习机(Deep Extreme Learning Machine,DELM)的组合光伏功率预测模型.该算法对光伏发电影响因素进行分析筛选,选出与光伏输出功率高度相关的因素作为输入变量,并采用经验模态分解(EMD)将光伏原始功率数据分解为多个特征模态函数(Intrinsic Mode Function,IMF).然后,将分解得到的IMF分量分别输入DELM预测模型,同时通过AO优化算法对DELM初始输入权重进行优化,从而提高深度极限学习机的泛化能力.最后,将各IMF分量预测结果叠加求和得到最终预测结果 .通过仿真结果表明,本文提出的EMD-AO-DELM预测模型,相较于单一DELM模型具有更好的预测精度,证明了所提方法的有效性. 相似文献
2.
随着世界经济的绿色发展,大力发展可再生能源逐渐成为共识。可再生能源中太阳能的开发利用已成为当前能源转型中的重要领域,并在很多科技发达国家得到了较广泛的应用。高精度的光伏发电功率预测对电力系统的优化调度、安全运行十分重要。由于光照强度和能见度等会影响太阳能发电量的随机性,提出一种基于高斯混合模型的光伏发电功率概率区间预测方法,通过利用K-means算法将光伏发电历史数据按天气进行划分,以划分后的预测误差为统计样本,采用高斯混合模型进行拟合并使用期望最大化算法估计模型参数,通过计算指定置信水平下的置信区间进行光伏发电功率概率区间预测。仿真结果表明所提方法在进行光伏发电功率区间预测时的性能评价指标均优于典型单一分布模型,证明了所提方法的准确性和适用性。 相似文献
3.
光伏发电功率的波动性和间歇性为电力系统调度管理带来巨大的挑战,精确的光伏功率区间预测是解决上述问题的一种有效途径。为此,本文提出了一种基于LSTM网络的新型短期光伏功率区间预测模型。采用MPA对LSTM网络的隐含层神经元数和训练批次数等超参数进行自动寻优,以克服随机选取LSTM模型参数过程中存在的盲目性、费时等问题;并将MPA-LSTM模型用于光伏功率点预测。然后,采用Bootstrap方法分析模型预测结果的误差分布,确定模型预测输出的区间范围。最后,通过对比仿真验证所提模型的有效性。结果表明:本文所提的MPA-LSTM模型均方误差的平均值为1.09%,优于SVM、LSTM、PSO-LSTM和MPA-SVM模型;Bootstrap方法能够准确地描述给定置信度水平下的光伏功率波动范围。 相似文献
4.
张勇 《齐齐哈尔大学学报(自然科学版)》2021,37(3):66-70
为减少新型建筑材料力学性能预测方法预测投入成本,提升预测效率,提出了基于极限学习机的新型建筑材料力学性能预测方法.提取新型建筑材料力学性能因子,不断加深对因子内部的了解,完善收集的数据信息,增强因子数据查找力度,进一步分析新型建筑材料力学性能因子的所处状态,按照内部分析准则转换因子存储方式,调节空间信息,利用获取的数据... 相似文献
5.
6.
针对证券指数具有随机性、时变、波动性较大、非线性等特点,传统线性预测方法预测精度低等缺陷,提出了一种基于极限学习机的证券指数预测方法。极限学习机克服了BP神经网络的训练速度慢、过拟合、局部极值等缺陷,具有训练速度快、全局最优和泛化能力优异等优点。采用1991~2013年上证指数对算法性能进行训练,2014年数据做测试,对100个测试数据仿真结果表明,复相关系数高达0.9935,极限学习机是一种预测精度高、误差小的证券指数预测算法,预测结果可以为用户提供有价值的参考意见。 相似文献
7.
准确预测拖拉机等柴油机械实际工况污染物排放在排放清单建立和区域污染物排放控制方面具有重要意义。基于拖拉机不同运行状态下发动机转速、油耗、燃烧比、CO、HC、NOX和PM等实测数据作为数据源,建立深度极限学习机(Deep Extreme Learning Machine,DELM)的预测模型,并对拖拉机怠速、行走和旋耕等基本工况下的污染物排放进行预测。为进一步评估DELM预测模型的适应性,将其与支持向量机(support vector machine, SVM)和前馈神经网络(Back propagation neural network, BPNN)模型进行对比分析。结果表明,1)DELM模型在预测排放时间序列方面具有一定优势,其预测拖拉机在怠速、行走和旋耕3种状态下的NOX、HC、CO和PM排放均方根误差均值分别为5.269×10-5、5.195×10-5、5.135×10-5和2.795×10-5。2)DELM模型与SVM和BP对比发现,DELM模型在鲁棒性以及适应性方面的优势显著。3)DELM方法的较高的准确度和泛化性,为基于发动机状态数据预测移动源尾气排放提供思路和方法。 相似文献
8.
《四川理工学院学报(自然科学版)》2019,(5):35-41
极限学习机(Extreme Learning Machine,ELM)是一种新型的前馈神经网络,该网络由广义逆直接求出输出层权重,使得其具有误差小、速度快的优点。但针对具体问题,ELM不能自动寻找到最佳的网络结构,从而造成该算法模型针对复杂、无规律性的数据精度及稳定性较差。为了提高极限学习机的泛化能力和预测精度,提出利用粒子群优化极限学习机算法对不同数据进行预测。使用粒子群算法(particle swarm optimization,PSO)选择最优的隐含层偏差和输入权值矩阵,计算出输出权值矩阵,从而提高ELM的精度及稳定性。并通过PSO-ELM和ELM分别对复杂程度不同的汽油辛烷值和交通流量数据进行算法预测比较发现,PSO-ELM优化算法对无规律性、复杂程度高的数据可以获得更高的精度,提高了数据预测的拟合能力。实验结果表明,PSO-ELM对于非线性、无规律性等复杂特性的数据预测具有一定的可行性和有效性。 相似文献
9.
针对醋酸精馏控制中,产品质量采用常规的温度间接控制存在精度低的问题,提出了一种基于小波核函数极限学习机的模型预测控制(KMPC)策略,在醋酸浓度软测量的基础上直接控制产品质量。鉴于小波核函数极限学习机(KELM)算法训练速度快并且稳定的特点,该控制系统采用KELM建立醋酸浓度控制器预测模型,以预测控制器的输出作为再沸器蒸汽流量控制器的设定值,构成串级调节系统,同时,以灵敏板温度、塔底温度、再沸器入口温度、压力等变量作为扰动变量,实现了对复杂精馏过程的前馈控制和非线性预测控制。运用ASPEN DYNAMICS流程模拟软件建立的醋酸精馏塔动态模型对KMPC策略进行仿真研究,结果表明,与传统DMC预测控制方案比较,塔底醋酸浓度控制精度有较大提高,控制结构简单,易于实施,能够实现产品质量的卡边控制。 相似文献
10.
优化极限学习机的序列最小优化方法 总被引:3,自引:0,他引:3
针对传统二次规划求解方法训练优化极限学习机(OMELM)存在速度慢和效率低的问题,提出了单变量迭代序列最小优化(SSMO)算法.该算法通过在框式约束中优化拉格朗日乘子来实现目标函数的最小化:首先在初始化拉格朗日乘子中选择使目标函数值下降最大的拉格朗日乘子,将该拉格朗日乘子作为目标函数的唯一变量;然后求解目标函数的最小值并更新该变量的值;重复这个过程直到所有的拉格朗日乘子都满足二次规划问题的Karush-Kuhn-Tucker条件为止.实验结果表明:SSMO算法只需调节很少的参数值便可得到足够好的泛化性能;采用SSMO算法的OMELM方法在泛化性能上要好于采用序列最小优化算法的支持向量机方法;在随机数据集测试中,SSMO算法具有较好的鲁棒性. 相似文献
11.
针对单核极限学习机在泛化性能上存在一定局限性的问题, 提出将再生核函数与多项式核函数相结合, 建立一种新的组合核极限学习机模型, 使其具有全局核与局部核的优点, 并选择布谷鸟搜索算法对其参数进行优化选择. 仿真实验结果表明, 采用基于再生核的组合核函数作为极限学习机的核函数可行, 在实验数据集的多值分类和回归问题上, 与传统支持向量机及单核极限学习机相比, 该模型具有更好的泛化性能. 相似文献
12.
13.
针对确定性负荷点预测存在不同程度误差及难以反映电力需求不确定性的问题,提出一种基于极点对称模态分解(extreme-point symmetric mode decomposition, ESMD)-分散熵(dispersion entropy, DE)和改进乌鸦搜索算法(improved crow search algorithm, ICSA)优化核极限学习机的短期负荷区间预测模型。首先用ESMD将原始负荷时间序列分解为多个特征互异的子序列,降低了原始非平稳负荷序列对预测结果的影响,并计算各子序列的分散熵,将熵值相近的子序列重组为新序列以降低计算规模;其次,基于上下限估计法,利用ICSA算法对核极限学习机(kernel extreme learning machine, KELM)输出权值进行优化,得到最优预测区间上下限,并以此分别对各新序列进行区间预测;最后将预测结果叠加得到最终的预测区间。仿真结果表明,所提模型有效提高了负荷预测区间的质量,为电力系统决策工作提供有力支持。 相似文献
14.
15.
山区环境中泥石流的孕育受多种因素的影响,为提高泥石流危险性的预测精度,提出一种萤火虫算法(firefly algorithm, FA)优化核极限学习机(kernel based extreme learning machine, KELM)的预测模型。首先,针对数据维度爆炸的问题,通过主成分分析(principal component analysis, PCA)数据降维,使得留有大部分致灾特征信息的因子输入训练模型;然后,使用萤火虫优化算法更新核极限学习机的参数,将四川省北川县监测数据输入优化后的预测模型,并与其他传统机器学习算法进行对比分析,验证该算法的优越性;最后,使用多种指标综合评估模型的预测效果。结果表明,FA-KELM模型能够有效地简化数据结构,提高泥石流危险性预测的准确性,为泥石流灾害预测方面的研究提供参考和借鉴。 相似文献
16.
针对负荷预测过程中特征量难以确定以及极限学习机(ELM)存在因随机产生的初始权值和阈值导致输出稳定性低的问题,提出了基于格拉姆施密特正交化与皮尔逊相关性分析相结合的特征选择方法(GSO-PCA)和改进灰狼算法(IGWO)优化ELM的短期电力负荷预测模型(IGWO-ELM)。对两种不同类型的特征分别使用GSO算法和PCA进行优选,并根据平均绝对百分比误差(MAPE)确定最优特征集,与传统的经验特征选择、最大互信息系数特征选择、随机森林特征选择比较,GSO-PCA特征选择的MAPE分别降低了1.3%、0.55%和0.83%,验证了其优越性;将Tent混沌映射和粒子群优化算法(PSO)融入到灰狼优化算法中,得到IGWO,并利用两种典型的测试函数对IGWO性能进行测试,证明了其具有更强的寻优能力;使用IGWO算法对ELM的初始权值和阈值进行动态优化,建立IGWO-ELM短期负荷预测模型。将拟合优度检验系数、平均绝对误差、均方根误差和MAPE作为评价指标,结合实例分析,与传统的模型进行比较。仿真结果表明:所提预测模型得到的4个评价指标分别为0.997 8、54.90 kW、72.02 kW和1.... 相似文献
17.
针对单核极限学习机在泛化性能上存在一定局限性的问题, 提出将再生核函数与多项式核函数相结合, 建立一种新的组合核极限学习机模型, 使其具有全局核与局部核的优点, 并选择布谷鸟搜索算法对其参数进行优化选择. 仿真实验结果表明, 采用基于再生核的组合核函数作为极限学习机的核函数可行, 在实验数据集的多值分类和回归问题上, 与传统支持向量机及单核极限学习机相比, 该模型具有更好的泛化性能. 相似文献
18.
针对传统基于BP神经网络建立的连铸坯质量预测模型训练速度慢、适应能力弱、预测精度低等问题,本文提出一种基于极限学习机的连铸坯质量预测方法,对方大特钢60Si2Mn连铸坯中心疏松和中心偏析缺陷进行预测,并与BP和遗传算法优化BP神经网络预测模型的预测结果进行分析对比.结果表明:BP及GA-BP神经网络预测模型对连铸坯中心疏松和中心偏析缺陷的预测准确率分别为50%、57.5%、70%和72.5%;而基于极限学习机的连铸坯预测模型预测准确率更高,对连铸坯中心疏松和中心偏析缺陷的预测准确率分别为85%和82.5%,且该模型具有极快的运算时间,仅需0.1s.该模型可对连铸坯质量进行迅速准确地分析,为连铸坯质量预测的在线应用提供了一种新的方法. 相似文献
19.
《西北大学学报(自然科学版)》2015,(4):545-550
研究洪水预测的神经网络模型,要求模型保证一定的运行效率和准确度。文中应用并行极限学习机建立的洪水预测模型预报精度达到应用水平,可以用于渭河和汉江流域的洪水预报。并行极限学习机兼有极限学习机和并行计算的优点,不需要反复迭代调整隐层节点,通过训练后即可进行预测,运行效率高,预报效果较好,具有一定的实用价值。 相似文献
20.
为了对烟草病毒病的病情指数进行建模研究,采用了一种正则极限学习机算法:通过引入惩罚因子来权衡结构风险与经验风险的大小,进一步增强网络的泛化性.针对烟草病毒病的众多影响因素,采用灰色关联度算法选取主要影响因子.使用某地1984—1995年病情资料、相关虫情和气象资料,经过数据挖掘、建模仿真,将正则极限学习机应用于烟草病毒病预测中,效果较好,对烟草病毒病的防治具有指导意义. 相似文献