首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为提高光伏功率预测精确度,提出一种基于经验模态分解(Empirical Mode Decomposition,EMD)-天鹰优化器(Aquila Optimizer,AO)-深度极限学习机(Deep Extreme Learning Machine,DELM)的组合光伏功率预测模型.该算法对光伏发电影响因素进行分析筛选,选出与光伏输出功率高度相关的因素作为输入变量,并采用经验模态分解(EMD)将光伏原始功率数据分解为多个特征模态函数(Intrinsic Mode Function,IMF).然后,将分解得到的IMF分量分别输入DELM预测模型,同时通过AO优化算法对DELM初始输入权重进行优化,从而提高深度极限学习机的泛化能力.最后,将各IMF分量预测结果叠加求和得到最终预测结果 .通过仿真结果表明,本文提出的EMD-AO-DELM预测模型,相较于单一DELM模型具有更好的预测精度,证明了所提方法的有效性.  相似文献   

2.
为提高多输入特征下光伏发电功率模型的短期预测精度,提出了一种基于优化TCN超参数的光伏功率预测组合模型。该模型集改进灰狼优化算法(Levy gold gray wolf optimization,LGGWO)、时域卷积网络 (Temporal convolutional network,TCN)和多头自注意力机制(Malti-Head Self-Attention)于一体 (LGGWO-TCN-MHSA)。首先,采用斯皮尔曼相关系数法提取对光伏功率影响较大的主要特征,并输入至TCN预测模型;然后,将提出的多策略改进灰狼优化算法LGGWO应用于TCN 内部进行超参数优化,改善模型预测性能;最后,将预测值输入至多头自注意力模型中进一步提升预测精度。实验采用澳大利亚原始光伏数据进行验证,通过与卷积神经网络(Convolutional Neural Networks,CNN)、长短期记忆神经网络(Long Short-Term Memory,LSTM)等六组模型进行对比,所提模型在测试数据集上的平均绝对误差(MAE)和均方根误差(RMSE)分别降低了2.03%~82.0%和10.5%~80.1%,结果表明:所提方法具有较高的预测精度和良好的稳定性。  相似文献   

3.
周帆  郑常宝  胡存刚  芮涛 《科学技术与工程》2021,21(24):10284-10290
随着世界经济的绿色发展,大力发展可再生能源逐渐成为共识。可再生能源中太阳能的开发利用已成为当前能源转型中的重要领域,并在很多科技发达国家得到了较广泛的应用。高精度的光伏发电功率预测对电力系统的优化调度、安全运行十分重要。由于光照强度和能见度等会影响太阳能发电量的随机性,提出一种基于高斯混合模型的光伏发电功率概率区间预测方法,通过利用K-means算法将光伏发电历史数据按天气进行划分,以划分后的预测误差为统计样本,采用高斯混合模型进行拟合并使用期望最大化算法估计模型参数,通过计算指定置信水平下的置信区间进行光伏发电功率概率区间预测。仿真结果表明所提方法在进行光伏发电功率区间预测时的性能评价指标均优于典型单一分布模型,证明了所提方法的准确性和适用性。  相似文献   

4.
光伏发电功率的波动性和间歇性为电力系统调度管理带来巨大的挑战,精确的光伏功率区间预测是解决上述问题的一种有效途径。为此,本文提出了一种基于LSTM网络的新型短期光伏功率区间预测模型。采用MPA对LSTM网络的隐含层神经元数和训练批次数等超参数进行自动寻优,以克服随机选取LSTM模型参数过程中存在的盲目性、费时等问题;并将MPA-LSTM模型用于光伏功率点预测。然后,采用Bootstrap方法分析模型预测结果的误差分布,确定模型预测输出的区间范围。最后,通过对比仿真验证所提模型的有效性。结果表明:本文所提的MPA-LSTM模型均方误差的平均值为1.09%,优于SVM、LSTM、PSO-LSTM和MPA-SVM模型;Bootstrap方法能够准确地描述给定置信度水平下的光伏功率波动范围。  相似文献   

5.
针对结晶器无氟保护渣粘度值预测复杂、预测精度低的问题,提出了一种基于改进鲸鱼优化算法的极限学习机模型并用于无氟保护渣粘度值预测。首先,构建无氟保护渣成分数据集,并对保护渣中成分与粘度值进行相关性分析;然后,利用改进 Tent 混沌映射和反向学习策略初始化鲸鱼优化算法的种群,融合非线性收敛因子和自适应t分布变异策略提高算法对极限学习机中超参数的寻优能力;最后,对无氟保护渣数据集进行粘度值预测对比实验,验证了改进算法的有效性。结果表明:与反向传播神经网络( back propagation neural network,BPNN),极限学习机(extreme learning machine,ELM)模型相比,平均绝对百分比误差平均降低了 29.50%,在寻优精度、预测精度和稳定性方面取得较大提升。  相似文献   

6.
为提高月径流时间序列预测精度,改进加权极限学习机(WELM)预测性能,对比验证“十二生肖”算法在基准测试函数和实例目标函数上的优化效果,提出经验小波变换二次分解(EWT)技术-“十二生肖”算法-WELM月径流时间序列预测模型.首先,利用经验小波变换(EWT)对月径流时间序列进行分解处理,得到EWT1、EWT2两个分解分量;采用模糊熵(FuzzyEn)计算EWT1、EWT2分量的模糊熵值,利用EWT对模糊熵值较大的EWT1分量进行二次分解,得到EWT1-1~EWT1-3三个分量.其次,基于EWT1-1~EWT1-3、EWT2分量训练集构建4个WELM输入层权值和隐含层偏差(超参数)优化的实例目标函数,同时选取6个基准测试函数作为对比验证函数,利用“十二生肖”算法分别对6个基准测试函数和4个实例目标函数进行极值寻优与对比分析.最后,建立EWT-“十二生肖”算法-WELM模型,通过云南省南洞地下河月径流预测实例对12种模型进行验证.结果表明:“十二生肖”算法对6个基准测试函数寻优的总排名与对4个实例目标函数寻优的总排名不一致,总体上冠豪猪优化算法(CPO)、野狗优化算法(DOA)寻优效果较好,变色龙算法(CSA)、天牛须搜索算法(BAS)、自学羚羊迁徙算法(SAMA)寻优效果较差;“十二生肖”算法对4个实例目标函数寻优的总排名与12种模型预测精度总排名基本一致,表明“十二生肖”算法极值寻优能力越强,获得的WELM超参数越优,所构建的预测模型性能越好;EWT-CPO/CSO/DOA/CapSA/WHO-WELM模型预测的EMAP、EMA、ERMS分别在0.422%~0.485%、0.022~0.026 m3/s、0.028~0.032 m3/s之间,优于其他对比模型,具有更好的预测效果.  相似文献   

7.
为减少新型建筑材料力学性能预测方法预测投入成本,提升预测效率,提出了基于极限学习机的新型建筑材料力学性能预测方法.提取新型建筑材料力学性能因子,不断加深对因子内部的了解,完善收集的数据信息,增强因子数据查找力度,进一步分析新型建筑材料力学性能因子的所处状态,按照内部分析准则转换因子存储方式,调节空间信息,利用获取的数据...  相似文献   

8.
9.
针对证券指数具有随机性、时变、波动性较大、非线性等特点,传统线性预测方法预测精度低等缺陷,提出了一种基于极限学习机的证券指数预测方法。极限学习机克服了BP神经网络的训练速度慢、过拟合、局部极值等缺陷,具有训练速度快、全局最优和泛化能力优异等优点。采用1991~2013年上证指数对算法性能进行训练,2014年数据做测试,对100个测试数据仿真结果表明,复相关系数高达0.9935,极限学习机是一种预测精度高、误差小的证券指数预测算法,预测结果可以为用户提供有价值的参考意见。  相似文献   

10.
针对经典智能算法用于滑坡位移预测时存在的网络结构参数选取复杂、易陷入局部极小等缺陷,提出了基于改进极限学习机ELM(Extreme Learning Machine)的滑坡位移预测模型。在滑坡变形位移状态辨识基础上,根据其位移变化特征,将滑坡位移曲线类型划分减速-匀速型、匀速-增速型、减速-匀速-增速型、复合型4类,将改进的ELM算法分别用于4种不同类型的滑坡位移预测。基于改进ELM算法构建滑坡位移预测模型时,采用二值区间搜索算法选定最佳隐含层神经元个数和激励函数,并融入数据滚动建模思想,以期提高网络泛化能力和预测精度。以链子崖、卧龙寺、古树屋、新滩滑坡体为例,对ELM预测的适用性进行讨论,实验结果表明,基于ELM构建不同类型滑坡位移预测模型时,具有较高的预测精度,且在网络学习速度等方面优势明显,适用于复杂状况下滑坡体的位移预测。  相似文献   

11.
准确预测拖拉机等柴油机械实际工况污染物排放在排放清单建立和区域污染物排放控制方面具有重要意义。基于拖拉机不同运行状态下发动机转速、油耗、燃烧比、CO、HC、NOX和PM等实测数据作为数据源,建立深度极限学习机(Deep Extreme Learning Machine,DELM)的预测模型,并对拖拉机怠速、行走和旋耕等基本工况下的污染物排放进行预测。为进一步评估DELM预测模型的适应性,将其与支持向量机(support vector machine, SVM)和前馈神经网络(Back propagation neural network, BPNN)模型进行对比分析。结果表明,1)DELM模型在预测排放时间序列方面具有一定优势,其预测拖拉机在怠速、行走和旋耕3种状态下的NOX、HC、CO和PM排放均方根误差均值分别为5.269×10-5、5.195×10-5、5.135×10-5和2.795×10-5。2)DELM模型与SVM和BP对比发现,DELM模型在鲁棒性以及适应性方面的优势显著。3)DELM方法的较高的准确度和泛化性,为基于发动机状态数据预测移动源尾气排放提供思路和方法。  相似文献   

12.
极限学习机(Extreme Learning Machine,ELM)是一种新型的前馈神经网络,该网络由广义逆直接求出输出层权重,使得其具有误差小、速度快的优点。但针对具体问题,ELM不能自动寻找到最佳的网络结构,从而造成该算法模型针对复杂、无规律性的数据精度及稳定性较差。为了提高极限学习机的泛化能力和预测精度,提出利用粒子群优化极限学习机算法对不同数据进行预测。使用粒子群算法(particle swarm optimization,PSO)选择最优的隐含层偏差和输入权值矩阵,计算出输出权值矩阵,从而提高ELM的精度及稳定性。并通过PSO-ELM和ELM分别对复杂程度不同的汽油辛烷值和交通流量数据进行算法预测比较发现,PSO-ELM优化算法对无规律性、复杂程度高的数据可以获得更高的精度,提高了数据预测的拟合能力。实验结果表明,PSO-ELM对于非线性、无规律性等复杂特性的数据预测具有一定的可行性和有效性。  相似文献   

13.
针对醋酸精馏控制中,产品质量采用常规的温度间接控制存在精度低的问题,提出了一种基于小波核函数极限学习机的模型预测控制(KMPC)策略,在醋酸浓度软测量的基础上直接控制产品质量。鉴于小波核函数极限学习机(KELM)算法训练速度快并且稳定的特点,该控制系统采用KELM建立醋酸浓度控制器预测模型,以预测控制器的输出作为再沸器蒸汽流量控制器的设定值,构成串级调节系统,同时,以灵敏板温度、塔底温度、再沸器入口温度、压力等变量作为扰动变量,实现了对复杂精馏过程的前馈控制和非线性预测控制。运用ASPEN DYNAMICS流程模拟软件建立的醋酸精馏塔动态模型对KMPC策略进行仿真研究,结果表明,与传统DMC预测控制方案比较,塔底醋酸浓度控制精度有较大提高,控制结构简单,易于实施,能够实现产品质量的卡边控制。  相似文献   

14.
优化极限学习机的序列最小优化方法   总被引:3,自引:0,他引:3  
针对传统二次规划求解方法训练优化极限学习机(OMELM)存在速度慢和效率低的问题,提出了单变量迭代序列最小优化(SSMO)算法.该算法通过在框式约束中优化拉格朗日乘子来实现目标函数的最小化:首先在初始化拉格朗日乘子中选择使目标函数值下降最大的拉格朗日乘子,将该拉格朗日乘子作为目标函数的唯一变量;然后求解目标函数的最小值并更新该变量的值;重复这个过程直到所有的拉格朗日乘子都满足二次规划问题的Karush-Kuhn-Tucker条件为止.实验结果表明:SSMO算法只需调节很少的参数值便可得到足够好的泛化性能;采用SSMO算法的OMELM方法在泛化性能上要好于采用序列最小优化算法的支持向量机方法;在随机数据集测试中,SSMO算法具有较好的鲁棒性.  相似文献   

15.
针对单核极限学习机在泛化性能上存在一定局限性的问题, 提出将再生核函数与多项式核函数相结合, 建立一种新的组合核极限学习机模型, 使其具有全局核与局部核的优点, 并选择布谷鸟搜索算法对其参数进行优化选择. 仿真实验结果表明, 采用基于再生核的组合核函数作为极限学习机的核函数可行, 在实验数据集的多值分类和回归问题上, 与传统支持向量机及单核极限学习机相比, 该模型具有更好的泛化性能.  相似文献   

16.
为了正确评价胰岛素在人体血糖调节中的重要作用,提出搭建一种基于极限学习机(extreme learning machine,ELM)方法的胰岛素评价预测模型.提出的胰岛β细胞功能评价方法,选取了人体空腹时的血糖浓度、空腹胰岛素浓度、糖耐量实验后的血糖浓度和胰岛素浓度等14个生理数据作为输入参数,对早期胰岛素分泌指数、胰...  相似文献   

17.
针对确定性负荷点预测存在不同程度误差及难以反映电力需求不确定性的问题,提出一种基于极点对称模态分解(extreme-point symmetric mode decomposition, ESMD)-分散熵(dispersion entropy, DE)和改进乌鸦搜索算法(improved crow search algorithm, ICSA)优化核极限学习机的短期负荷区间预测模型。首先用ESMD将原始负荷时间序列分解为多个特征互异的子序列,降低了原始非平稳负荷序列对预测结果的影响,并计算各子序列的分散熵,将熵值相近的子序列重组为新序列以降低计算规模;其次,基于上下限估计法,利用ICSA算法对核极限学习机(kernel extreme learning machine, KELM)输出权值进行优化,得到最优预测区间上下限,并以此分别对各新序列进行区间预测;最后将预测结果叠加得到最终的预测区间。仿真结果表明,所提模型有效提高了负荷预测区间的质量,为电力系统决策工作提供有力支持。  相似文献   

18.
随着智能电网和通信技术的迅速发展,电网系统采集的用户数据规模呈指数增长,传统电网负荷预测方法难以满足海量负荷数据情形下的高效分析和计算需求.据此,依托电力系统数据采集云平台,提出一种基于云计算和改进极限学习机的电网负荷预测模型,采用Map-Reduce网络架构,部署于Hadoop平台,利用分布式计算方式进行电网负荷的精...  相似文献   

19.
山区环境中泥石流的孕育受多种因素的影响,为提高泥石流危险性的预测精度,提出一种萤火虫算法(firefly algorithm, FA)优化核极限学习机(kernel based extreme learning machine, KELM)的预测模型。首先,针对数据维度爆炸的问题,通过主成分分析(principal component analysis, PCA)数据降维,使得留有大部分致灾特征信息的因子输入训练模型;然后,使用萤火虫优化算法更新核极限学习机的参数,将四川省北川县监测数据输入优化后的预测模型,并与其他传统机器学习算法进行对比分析,验证该算法的优越性;最后,使用多种指标综合评估模型的预测效果。结果表明,FA-KELM模型能够有效地简化数据结构,提高泥石流危险性预测的准确性,为泥石流灾害预测方面的研究提供参考和借鉴。  相似文献   

20.
提出一种基于混合遗传蚁群算法(GA-ACO)改进BP神经网络的预测模型.通过皮尔逊相关系数公式求出与光伏发电输出功率相关性强的气象特征作为训练模型的输入,减少无关气象特征量对光伏输出功率的预测影响.运用遗传算法(GA)产生寻找最优参数问题的信息素分布,蚁群算法(ACO)在有初始信息素分布的条件下输出最优权阈值,让BP神经网络二次训练,输出预测值.分析结果表明,以晴天为例,GA-ACO-BP神经网络模型比传统BP神经网络模型、ACO-BP神经网络模型、GA-BP神经网络模型的预测结果相对误差分别减少了9.47%、4.83%和3.27个百分点,因此GA-ACO-BP神经网络模型用于光伏发电功率预测时具有更好的预测精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号