共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
滚动轴承作为旋转机械的重要组成部分,其运行安全性受到大量关注,但传统的基于信号处理的时频分析故障诊断方法较为依赖专家知识从而难以广泛应用。结合应用较广的卷积神经网络和长短时记忆网络模型的优点-自动提取振动信号的深层特征信息以及可识别所提取的长时连续的振动信号时序特征信息,提出一种深度特征提取神经网络模型,将原始的振动信号作为模型输入,进而通过多层卷积与长短时记忆网络对振动信号进行故障特征信息提取,可以有效提取滚动轴承振动信号中的深层时序故障特征信息,进而准确辨识滚动轴承不同的故障模式,并且避免了复杂的信号预处理与人工进行信号特征提取的过程。通过凯斯西储大学滚动轴承故障实验的10类健康状态数据验证了所提方法的有效性,并对实验结果进行分析,解释了在迭代过程中出现精度波动的可能原因。 相似文献
4.
针对滚动轴承不同故障类型和不同损伤程度识别准确率较低的问题,提出了将小波包能量熵、灰狼优化算法和支持向量机相结合的故障诊断方法.首先,将滚动轴承振动信号进行3层小波包分解,对第3层各频段小波包分解系数进行重构,提取各频段成分的能量熵构成故障特征向量;其次,利用灰狼优化算法实现支持向量机参数优化;最后,基于优化后的支持向量机分类模型完成对测试集滚动轴承不同故障类型和不同损伤程度特征向量的识别诊断.实验结果表明,相比实验和文献中其他方法,该方法对滚动轴承不同故障类型和不同损伤程度具有更加突出的故障辨识能力. 相似文献
5.
双列圆锥滚动轴承在列车走行部应用广泛,由于该类轴承结构比较复杂,传统的故障诊断方法难以识别该类轴承的早期微弱故障.为此,提出基于深度学习的双列圆锥滚动轴承早期微弱故障诊断方法.首先,对轴承的振动信号进行经验模态分解,提取信号的瞬时能量构造特征向量;最后,利用深度学习方法对特征向量进行无监督学习,生成故障诊断分类器,完成故障的分类识别.实验中对某型号双列圆锥滚动轴承的正常状态、内圈故障和外圈故障进行信号分析与故障识别.结果表明,所提方法能有效识别双列圆锥滚动轴承的早期微弱故障,分类准确率达到98%. 相似文献
6.
近年来,基于深度学习的智能故障诊断方法在理论研究和工程应用方面都取得了显著的效果,滚动轴承是轧机的核心部件之一,对轧机轴承进行精确的故障诊断能够有效保障轧机装备安全运行与生产效率.当前基于深度学习的故障诊断方法通常训练过程不稳定,模型难以收敛,造成工程应用中随机性强.本文提出基于改进优化算法的轧机滚动轴承深度故障诊断方法,在保证模型诊断精度的同时提升训练效率、模型输出结果的稳定性以及模型相对于参数变化所表现出的鲁棒性,并通过实验台获取滚动轴承的故障数据,使用该方法对数据进行诊断来证明方法的准确性. 相似文献
7.
针对现有基于振动信号的诊断模型泛化能力差,而深度学习网络对计算量和存储量要求高的问题,提出轻量级融合密集连接网络与残差神经网络的故障诊断模型.首先,利用格拉姆角场将原始时序信号映射为灰度图像,充分利用二维卷积神经网络的性能;然后,融合密集连接网络和残差神经网络的优点构建融合网络模型,并通过鬼影模块降低其性能消耗,形成轻量级和高识别率的深度网络.实验结果表明,该改进的融合深度学习模型在比传统模型具有更强的鲁棒性和适用性的同时,还拥有极低的浮点运算量与参数量资源占用,证明了该方法在滚动轴承故障诊断领域是有效的、可行的. 相似文献
8.
《中南大学学报(自然科学版)》2017,(1)
针对传统的分类器对滚动轴承早期微弱故障进行诊断时泛化能力不强的问题,提出基于Teager能量算子(TEO)和深度置信网络(DBN)的滚动轴承故障诊断方法。先用TEO提取滚动轴承振动信号中的瞬时能量,构造相应的特征向量;采用层次优化算法调整DBN结构参数,生成合适的分类器。应用美国西储大学轴承实验振动信号,对不同类型、不同损伤程度的滚动轴承进行故障诊断,对比分析DBN、支持向量机(SVM)和邻近算法(KNN)的分类准确性。研究结果表明:DBN能更准确、稳定地识别滚动轴承各种故障,具有较强的泛化能力。 相似文献
9.
针对滚动轴承目标域数据中额外故障状态样本影响其故障诊断精度的问题,提出了采用深度迁移学习与自适应加权的滚动轴承故障诊断方法。建立特征提取模块,利用深度卷积神经网络将轴承样本映射到高维特征空间;利用迁移学习思想设计加权领域鉴别器,对样本进行自适应加权,并通过在特征空间的对抗训练,增大目标域与源域共有健康状态样本的领域相似性,抑制目标域额外故障状态样本与源域样本的领域相似性增强;依据样本权重,度量目标域与源域样本的相似性,设定阈值将目标域额外故障状态样本标记为未知故障;将源域故障诊断知识迁移到目标域共有健康状态样本的故障识别中。利用齿轮箱轴承数据、凯斯西储大学滚动轴承数据和机车轮对轴承数据对提出的方法进行验证,结果表明:所提方法在3个数据集上均达到89%以上的诊断精度,而对比方法的诊断精度均低于80%。所提方法能够克服额外故障状态样本的影响,有效实现滚动轴承故障诊断。 相似文献
10.
针对滚动轴承振动信号在强噪声环境下出现非线性、非平稳、强干扰特性,进而导致故障特征难以提取及故障诊断准确率低的问题,提出变分模态分解(VMD)-多尺度排列熵(MPE)-核主元分析(KPCA)特征提取与多分类相关向量机(MRVM)相混合的滚动轴承故障诊断方法.该方法首先通过VMD-MPE进行滚动轴承振动信号的高维故障特征提取,其次对提取的故障特征进行KPCA可视化降维,最后将降维后的故障特征输入可实现不同样本概率输出的MRVM进行滚动轴承故障诊断.通过美国西储大学的滚动轴承故障数据集对该方法的有效性进行验证,结果表明提出的VMD-MPE-KPCA特征提取与MRVM相混合的滚动轴承故障诊断方法能够有效提取和识别滚动轴承故障特征,所提出的混合智能故障诊断方法与相关文献报道的故障诊断方法相比较,故障识别准确率达到了99.18%. 相似文献
11.
针对噪声环境下滚动轴承故障难以诊断的问题,提出一种基于深度学习融合网络的轴承故障识别新方法。该方法首先对轴承振动信号进行一定程度的随机损坏,并将加噪后的数据输入卷积降噪自编码器(convolutional denoising autoencoder, CDAE)中对网络进行训练,目的是降低信号中的噪声干扰并提取浅层特征;然后,利用深度信念网络(deep belief network, DBN)学习深层特征并建立轴承状态识别模型,输出故障识别结果。在融合模型中,将卷积降噪自编码器作为网络的第一层以增强网络的抗干扰能力,提高故障的识别精度。使用凯斯西储大学(CWRU)滚动轴承数据对所提模型进行验证,结果表明提出的融合模型在噪声环境下能够较好地实现轴承的故障状态识别。 相似文献
12.
针对噪声环境下滚动轴承故障难以诊断的问题,提出一种基于深度学习融合网络的轴承故障识别新方法。该方法首先对轴承振动信号进行一定程度的随机损坏,并将加噪后的数据输入卷积降噪自编码器(convolutional denoising autoencoder,CDAE)中对网络进行训练,目的是降低信号中的噪声干扰并提取浅层特征;然后,利用深度信念网络(deep belief network,DBN)学习深层特征并建立轴承状态识别模型,输出故障识别结果。在融合模型中,将卷积降噪自编码器作为网络的第一层以增强网络的抗干扰能力,提高故障的识别精度。使用凯斯西储大学(CWRU)滚动轴承数据对所提模型进行验证,结果表明提出的融合模型在噪声环境下能够较好地实现轴承的故障状态识别。 相似文献
13.
针对故障轴承信号的非线性、非高斯性,提出了一种基于双谱和纠错编码支持向量机(error-correcting output codes support vector machine,ECOC-SVM)的滚动轴承故障诊断方法。使用故障轴承振动信号双谱特征构造特征向量,在SVM的训练过程中,使用微粒群算法(particleswarm optimization,PSO)对支持向量机的参数进行优化。实验结果表明该方法能获得较高分类准确率。 相似文献
14.
王小龙 《成都大学学报(自然科学版)》2016,35(2):178-182
滚动轴承是机械工业的重要零部件,其好坏直接影响到机器最高性能的发挥,轴承在工作中承受冲击载荷与摩擦,内部结构易损坏失效,但轻微的故障极不容易发现.构建了一个故障诊断测试系统,利用MATLAB软件编程处理数据结合时域频域分析方法,最后应用BP神经网络进行模式识别故障诊断研究. 相似文献
15.
16.
基于TVAR-HMM的滚动轴承故障诊断 总被引:2,自引:0,他引:2
针对工况条件下轴承故障振动信号的非平稳特性,分析时变自回归与隐马尔科夫模型的特点,提出了一种基于时变自回归和隐马尔科夫模型的滚动轴承故障诊断方法.振动信号经时变自回归建模后,得到时频分辨率较高、无交叉干扰项的时频谱,基于能量法对时频谱进行特征提取,然后利用隐马尔科夫模型对故障特征统计分类,实现对轴承故障的诊断.轴承信号分析表明,TVAR建模可以有效地提取信号中的故障特征,结合隐马尔科夫模型的动态统计特性可智能识别轴承故障类型,得到良好的诊断效果. 相似文献
17.
基于小波分析的滚动轴承故障诊断研究 总被引:2,自引:0,他引:2
小波分析是针对非平稳信号的一种有效的数据分析方法。在此基础上提出了基于小波分析的滚动轴承故障诊断技术。它将振动信号进行小波分解与重构,然后对其中某粗略信号进行频谱分析,其频谱特征可以揭示故障的有无及其发生部位。通过滚动轴承内环点蚀、外环划痕、滚动体划痕三种典型故障的实验,验证了该方法在滚动轴承故障诊断方面的可行性和有效性。 相似文献
18.
针对滚动轴承传统故障诊断方法训练收敛速度慢、识别准确率不高、抗噪性能差等问题,提出CWT-CNN的轴承故障诊断模型。通过对滚动轴承振动数据经连续小波变换生成的时频图进行三次垂直方向随机裁剪的方法扩充数据集,之后将其导入到搭建的加入了批量归一化和随机失活的卷积神经网络中进行模型训练,再由训练好的模型实现轴承故障分类。为了测试模型性能,使用凯斯西储大学轴承数据集进行检测,经过实验结果表明:基于提出的方法构建的数据集相比于常规方法,在搭建的卷积神经网络训练中收敛速度更快,训练出的模型性能也更加稳定,最终最高测试准确率为99.75%,常规方法构建的数据集准确率为99.67%,证明了构建数据集方法的可行性;在原始数据中加入信噪比为6dB高斯白噪声后,通过常规方法构建的数据集测试的最高准确率仍达到了98.67%,展现了基于CWT-CNN的轴承故障诊断模型较强的抗噪能力,证明了所提方法的有效性和可行性。 相似文献
19.
提出一种基于奇异值分解(SVD)和深度信度网络(DBN)多分类器的滚动轴承故障诊断方法.对滚动轴承的振动信号进行相空间重构,得到相应的特征矩阵;对特征矩阵进行SVD分解,并用所得整个奇异值序列构造特征向量,建立DBN多分类器模型,以实现滚动轴承的故障诊断;同时,将所提出的方法与DBN、反向传播神经网络、支持向量机等算法进行对比.结果表明,所提出的方法能够更加稳定、可靠地识别滚动轴承的故障类型和故障程度. 相似文献
20.
滚动轴承振动信号具有非线性、非平稳性,轴承故障发展具有渐变模糊性。因此,提出了一种基于局部均值分解(Local Mean Decomposition,LMD)和模糊C均值聚类(Fuzzy C-means Clustering,FCM)相结合的轴承故障诊断方法。应用此方法对轴承外圈故障、内圈故障以及滚动体故障进行诊断,结果表明该方法可以有效地对轴承故障类型进行识别。 相似文献