共查询到18条相似文献,搜索用时 54 毫秒
1.
一种改进的蚁群求解算法 总被引:1,自引:0,他引:1
为了提高蚁群算法的求解性能,对基本蚁群算法进行了改进.采用上三角的信息素存储形式、改禁忌表为可选表、遗传算法中的交叉及变异、全局更新信息素等做法对基本蚁群算法进行改进,并介绍了在Matlab环境下编程实现的方法及步骤,仿真实验求解了16个城市的TSP问题,得到最短距离为73.988,结果表明了编程思路的正确性及算法的高效性.此改进算法改善了随着求解空间的增加而导致的求解效率低下及因迭代次数的增加而造成的信息素量堆积导致的不成熟收敛,提高了搜索能力及速度,拓展了搜索空间. 相似文献
2.
为了克服基本蚁群算法搜索时间过长,易陷于局部最优等缺点。引入了随机算法,并提出了一种采用随机模式调整信息素的改进蚁群算法RACA(Randomized Ant Colony Algorithm)。采用随机地计算部分点的函数值,并对当前最优、次优解的部分解启用新的信息素调整规则。该算法保持了解的多样性,增强了全局搜索的能力。运算结果表明新的蚁群算法对求解连续函数优化问题有较好的改进效果。 相似文献
3.
针对标准蚁群算法易于出现早熟停滞等缺陷,在原有算法基础上引入一定比例的侦查蚁群.在优化过程中侦查蚁群以一定概率做侦查搜索,以扩大了解的搜索空间;在信息素更新策略上,为了兼顾当代和历代的搜索成果,采取了信息素混合更新策略,同时增强侦查子群的最佳路径信息及剩余全部蚁群路径信息,有效抑制了收敛过程中的早熟停滞现象,提高了算法收敛速度.在QAPLIB的实例上的仿真结果表明,通过与标准蚁群算法进行性能比较,结果表明该算法不仅能够克服早熟现象,而且能够加快收敛速度. 相似文献
4.
改进蚁群算法求解多目标优化问题 总被引:1,自引:0,他引:1
针对传统蚁群算法在多目标优化问题中容易陷入局部最优的缺点,提出一种采用直接学习机制的改进蚁群算法。该算法通过采用模拟蚂蚁用触角交流信息过程的直接通信学习机制,用以改进信息素的更新规则,从而维持群体的多样性。通过两组多目标基准函数验证算法性能,仿真结果表明该算法所获得的Pareto解具有多样性以及均匀分布性,有效地提高了蚁群算法全局寻优的能力。 相似文献
5.
遗传算法是一种借鉴生物界自然选择和自然遗传机制的随机化搜索方法,可直接对结构对象进行操作,但是如果兼顾收敛速度和解的品质两个指标,单纯的遗传算法未必表现出原理本身的优越性。针对上述问题,提出一种新的遗传蚁群融合算法,利用蚁群算法的正反馈机制,来提高遗传算法运行的速度和效率,从而更好更快的解决函数优化求解问题。 相似文献
6.
在钻井过程中,为了使钻进过程达到最优的技术和经济指标,需要选择合理的钻进参数。针对单目标钻进参数优化的局限性和不足,通过分析钻进参数之间的相互关系,综合考虑多个目标(如机械钻速最大、钻头寿命最长及钻头比能最小)建立一定约束条件下的多目标优化模型,实现最优的钻压-转速配合。采用改进的蚁群算法进行钻进参数优化,在具体的钻井实例中进行仿真,并将仿真结果与其他经典优化算法的结果进行对比分析。实验结果进一步证明了该模型和算法的有效性和实用性,为蚁群算法在钻进参数优化研究中的应用提供了理论依据。 相似文献
7.
8.
为研究结构优化设计问题,以二进制为基础,基于图解的蚁群系统,提出伪并行蚁群算法,以改善蚁群算法性能,并将其应用于结构优化设计中参数的求解.算例表明,改进的蚁群算法可求解连续优化问题,收敛速度快,计算精度高,并具有满意的优化效果,可用于工程优化设计. 相似文献
9.
《河南大学学报(自然科学版)》2016,(1)
校车路径问题(SBRP)是在满足学生交通服务各种约束条件的前提下,寻求高效的校车路径方案,将学生从乘车站点运送到学校,达到一定的服务质量目标和校车运营效率目标.现有SBRP算法主要优化校车路径长度目标,较少关注如何减少所需校车数量.鉴于减少校车数量能显著降低校车服务成本,尝试设计蚁群优化(ACO)算法求解双目标SBRP问题.在校车容量和学生最大乘车时间约束下,将减少路径数量作为第一目标,缩减路径总长度为第二目标,设计了一个ACO算法.重点讨论了校车路径构造算法、与优化目标相关的信息素更新方法、局部搜索路径改进和提升双目标的两阶段策略.采用基准案例进行测试,验证算法的有效性.与CPLEX精确算法相比,ACO算法在求解路径数量和计算效率方面具有明显的优势. 相似文献
10.
11.
基于蚁群算法的改进遗传算法 总被引:1,自引:0,他引:1
翟梅梅 《安徽理工大学学报(自然科学版)》2009,29(3):58-63
遗传算法具有快速全局搜索能力,但对于系统中的反馈信息却没有利用,往往导致无为的冗余迭代,求解效率低.根据这一缺陷提出一种将蚁群算法融合到遗传算法的新策略:为了弥补遗传算法中的变异算子变异过程中的盲目无原则性,将蚁群算法的正反馈思想引入到遗传算法中.利用蚁群算法信息素更新原则指导变异规则,有效地提高了算法的寻优效率,优化了解的质量.为了验证算法的有效性,对TSPLIB库中的两个公共实际事例eil51和gr202以及安徽省17个城市的数据进行了仿真实验,结果表明改进后的算法是有效的. 相似文献
12.
为保持所求得的多目标优化问题Pareto最优解的多样性,文章提出了一种新的蚁群算法。选择策略采用多信息素权重,信息素更新结合了局部信息素更新与全局信息素更新。其中,全局信息素更新采用了两个最好解。此外,通过在外部设置外部集来存储Pareto解,并将改进的算法应用在双目标TSP上。最后进行了仿真实验,结果表明新方法比NSGA-II和SPEA2更有效。 相似文献
13.
传统的蚁群算法存在难以确定计算参数,求解大规模问题时不易收敛的问题.本文针对该问题对蚁群算法进行改进,结合专家系统和遗传算法来自动确定系统参数,并采用分而治之的策略对大规模问题进行分解.仿真实验表明,该策略提高了问题求解的效率. 相似文献
14.
针对标准蚁群算法易于出现早熟停滞等缺陷,在原有算法基础上引入一定比例的侦查蚁群.在优化过程中侦查蚁群以一定概率做侦查搜索,以扩大解的搜索空间;在信息素更新策略上,为了兼顾当代和历代的搜索成果,采取了信息素混合更新策略,同时增强侦查子群的最佳路径信息及剩余全部蚁群路径信息,有效抑制了收敛过程中的早熟停滞现象,提高了算法收敛速度.通过对最短路径路由算法的仿真实验,并与标准蚁群算法进行性能比较,结果表明该算法不仅能够克服早熟现象,而且能够加快收敛速度. 相似文献
15.
基于蚁群算法求解TSP 总被引:1,自引:0,他引:1
董萍 《无锡职业技术学院学报》2008,7(5):34-36
蚁群算法是通过模拟蚂蚁觅食而发展出的一种新的启发式算法,被广泛地用于解决组合优化问题,它是新兴的仿生进化算法,具有并行计算、正反馈等特点,具有较强的发现问题的能力,在许多领域得到应用。文章应用蚁群算法求解TSP问题,分析了蚁群算法的原理、特征、参数及求解TSP问题的具体实现步骤。 相似文献
16.
针对现有蚁群聚类中将带聚类样本放于网格进行聚类的算法存在随机移动而延长聚类时间,及大数据集进行蚁群聚类时收敛速度慢的缺点,在蚁群进行聚类前增加数据预处理.利用两元素越相似属于同一类簇的可能性越大的思想,将样本集中的样本量缩小.研究了通过信息素进行聚类的蚁群聚类算法,使算法中的"蚂蚁"在一定指导下进行聚类,达到缩短时间的目的.最后通过实验验证了所提出算法的有效性和优越性. 相似文献
17.
蚁群优化算法的参数设置一直是依靠经验和试验来确定,造成试验工作量大且难以得到最优的参数组合。通过对蚁群优化算法各操作参数作用与意义的分析,将蚁群优化算法的参数设定描述为一个多因素多水平优化设计问题。为使蚁群优化算法在应用中发挥最佳的寻优性能,提出带有动态参数决策模型的改进蚁群优化算法。作业车间调度问题的仿真试验表明,利用动态参数决策模型得到的参数组合可使蚁群优化算法获得较优的运行性能,说明了该方法的可行性和有效性。 相似文献
18.
赵凤遥 《南京邮电大学学报(自然科学版)》2009,9(19)
为研究结构优化设计问题,以二进制为基础,基于图解的蚁群系统,提出伪并行蚁群算法,以改善蚁群算法性能,并将其应用于结构优化设计中参数的求解。算例表明,改进的蚁群算法可求解连续优化问题,收敛速度快,计算精度高,并具有满意的优化效果,可用于工程优化设计。 相似文献