首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The last two decades have witnessed great advances in reconstructing the transition from non-avian theropods to avians, but views in opposition to the theropod hypothesis still exist. Here we highlight one issue that is often considered to raise problems for the theropod hypothesis of avian origins, i.e. the “temporal paradox” in the stratigraphic distribution of theropod fossils — the idea that the earliest known avian is from the Late Jurassic but most other coelurosaurian groups are poorly known in the Jurassic, implying that avians arose before their supposed ancestors. However, a number of Jurassic non-avian coelurosaurian theropods have recently been discovered, thus documenting the presence of most of the major coelurosaurian groups in the Jurassic alongside, or prior to, avians. These discoveries have greatly improved the congruence between stratigraphy and phylogeny for derived theropods and, effectively, they reject the “temporal paradox” concept. Most importantly, these discoveries provide significant new information that supports the relatively basal positions of the Tyrannosauroidea and Alvarezsauroidea among the Coelurosauria. Indeed, they imply a new phylogenetic hypothesis for the interrelationships of Paraves, in which Archaeopteryx, the Dromaeosauridae, and the Troodontidae form a monophyletic group while the Scansoriopterygidae, other basal birds, and probably also the Oviraptorosauria, form another clade. Mapping some of the salient features onto a temporally-calibrated theropod phylogeny indicates that characteristics related to flight and arboreality evolved at the base of the Paraves, earlier than the Late Jurassic.  相似文献   

2.
The distribution of integumentary structures in a feathered dinosaur   总被引:18,自引:0,他引:18  
Ji Q  Norell MA  Gao KQ  Ji SA  Ren D 《Nature》2001,410(6832):1084-1088
Non-avian theropod dinosaurs with preserved integumentary coverings are becoming more common; but apart from the multiple specimens of Caudipteryx, which have true feathers, animals that are reasonably complete and entirely articulated that show these structures in relation to the body have not been reported. Here we report on an enigmatic small theropod dinosaur that is covered with filamentous feather-like structures over its entire body.  相似文献   

3.
The trackway of a swimming theropod (ichnogenus Characichnos) is reported from the Lower Cretaceous Feitianshan Formation of Sichuan, China. These swim tracks help confirm that non-avian theropods were capable of forging moderately deep bodies of water. The trackway occurs on the same surface as a typical walking trackway of a sauropod (ichnogenus Brontopodus). Both occurrences are the first reported from the Cretaceous of Sichuan, and the swim tracks are the first well-preserved example of a Characichnos trackway from China. Additionally, a theropod walking trackway and several ornithopod walking trackways (similar to the ichnogenus Caririchnium) occur in the same horizon. The ornithopod trackways show a parallel orientation, suggesting gregarious behavior of the trackmakers, which may have been iguanodontiforms and/or hadrosauriforms. The co-occurrence of theropod swim tracks and theropod walking tracks suggests a fluctuation of water depth within a distinct time span.  相似文献   

4.
A J Charig  A C Milner 《Nature》1986,324(6095):359-361
An extremely large claw bone, some 30 cm long, was found in Wealden (Lower Cretaceous) deposits in a Surrey claypit in January 1983. This led to the discovery the following month of the well-preserved skeleton of a new large theropod dinosaur. Only one other theropod specimen comprising more than a few bones had ever been found in Britain, and that discovery was more than a century ago. Indeed, no large theropod, reasonably complete, had previously been discovered in Lower Cretaceous rocks anywhere in the world. Our study so far suggests that the Surrey dinosaur was a typical large theropod in certain respects, resembling, for example Allosaurus. In several other respects, however, it differs sufficiently from all known dinosaurs to merit designation as the representative of a new species, genus and family.  相似文献   

5.
Xu X  Zhou Z  Prum RO 《Nature》2001,410(6825):200-204
The evolutionary origin of feathers has long been obscured because no morphological antecedents were known to the earliest, structurally modern feathers of Archaeopteryx. It has been proposed that the filamentous integumental appendages on several theropod dinosaurs are primitive feathers; but the homology between these filamentous structures and feathers has been disputed, and two taxa with true feathers (Caudipteryx and Protarchaeopteryx) have been proposed to be flightless birds. Confirmation of the theropod origin of feathers requires documentation of unambiguously feather-like structures in a clearly non-avian theropod. Here we describe our observations of the filamentous integumental appendages of the basal dromaeosaurid dinosaur Sinornithosaurus millenii, which indicate that they are compound structures composed of multiple filaments. Furthermore, these appendages exhibit two types of branching structure that are unique to avian feathers: filaments joined in a basal tuft, and filaments joined at their bases in series along a central filament. Combined with the independent phylogenetic evidence supporting the theropod ancestry of birds, these observations strongly corroborate the hypothesis that the integumental appendages of Sinornithosaurus are homologous with avian feathers. The plesiomorphic feathers of Sinornithosaurus also conform to the predictions of an independent, developmental model of the evolutionary origin of feathers.  相似文献   

6.
Cannibalism in the Madagascan dinosaur Majungatholus atopus   总被引:1,自引:0,他引:1  
Rogers RR  Krause DW  Curry Rogers K 《Nature》2003,422(6931):515-518
Many lines of evidence have been brought to bear on the question of theropod feeding ecology, including functional and physiological considerations, morphological constraints, taphonomic associations, and telling--although rare--indications of direct ingestion. Tooth marks of theropods, although rarely described and generally left unassigned to a particular taxon, can provide unique clues into predator-prey interaction, and can also yield insights into the extent of carcass utilization. Here we describe a sample of tooth-marked dinosaur bone recovered from three well-documented localities in the Upper Cretaceous Maevarano Formation of Madagascar that provides insights into the feeding ecology of the abelisaurid theropod Majungatholus atopus. Intensely tooth-marked elements from multiple individuals show that Majungatholus defleshed dinosaur carcasses. Furthermore, Majungatholus clearly fed upon the remains of not only sauropods, but also conspecifics, and thus was a cannibal. Cannibalism is a common ecological strategy among extant carnivores, but until now the evidence in relation to carnivorous dinosaurs has been sparse and anecdotal.  相似文献   

7.
Novas FE  Pol D 《Nature》2005,433(7028):858-861
Most of what is known about the evolution of deinonychosaurs (that is, the group of theropods most closely related to birds) is based on discoveries from North America and Asia. Except for Unenlagia comahuensis and some fragmentary remains from northern Africa, no other evidence was available on deinonychosaurian diversity in Gondwana. Here we report a new, Late Cretaceous member of the clade, Neuquenraptor argentinus gen. et sp. nov., representing uncontroversial evidence of a deinonychosaurian theropod in the Southern Hemisphere. The new discovery demonstrates that Cretaceous theropod faunas from the southern continents shared greater similarity with those of the northern landmasses than previously thought. Available evidence suggests that deinonychosaurians were probably distributed worldwide at least by the beginning of the Cretaceous period. The phylogenetic position of the new deinonychosaur, as well as other Patagonian coelurosaurian theropods, is compatible with a vicariance model of diversification for some groups of Gondwanan and Laurasian dinosaurs.  相似文献   

8.
Padian K  Dial KP 《Nature》2005,438(7066):E3; discussion E3-E3; discussion E4
  相似文献   

9.
Göhlich UB  Chiappe LM 《Nature》2006,440(7082):329-332
Small Late Jurassic theropod dinosaurs are rare worldwide. In Europe these carnivorous dinosaurs are represented primarily by only two skeletons of Compsognathus, neither of which is well preserved. Here we describe a small new theropod dinosaur from the Late Jurassic period of Schamhaupten in southern Germany. Being exquisitely preserved and complete from the snout to the distal third of the tail, the new fossil is the best-preserved predatory, non-avian dinosaur in Europe. It possesses a suite of characters that support its identification as a basal coelurosaur. A cladistic analysis indicates that the new taxon is closer to maniraptorans than to tyrannosauroids, grouping it with taxa often considered to be compsognathids. Large portions of integument are preserved along its tail. The absence of feathers or feather-like structures in a fossil phylogenetically nested within feathered theropods indicates that the evolution of these integumentary structures might be more complex than previously thought.  相似文献   

10.
The smallest known non-avian theropod dinosaur   总被引:39,自引:0,他引:39  
Xu X  Zhou Z  Wang X 《Nature》2000,408(6813):705-708
Non-avian dinosaurs are mostly medium to large-sized animals, and to date all known mature specimens are larger than the most primitive bird, Archaeopteryx. Here we report on a new dromaeosaurid dinosaur, Microraptor zhaoianus gen. et sp. nov., from the Early Cretaceous Jiufotang Formation of Liaoning, China. This is the first mature non-avian dinosaur to be found that is smaller than Archaeopteryx, and it eliminates the size disparity between the earliest birds and their closest non-avian theropod relatives. The more bird-like teeth, the Rahonavis-like ischium and the small number of caudal vertebrae of Microraptor are unique among dromaeosaurids and improve our understanding of the morphological transition to birds. The nearly completely articulated foot shows features, such as distally positioned digit I, slender and recurved pedal claws, and elongated penultimate phalanges, that are comparable to those of arboreal birds. The discovery of these in non-avian theropods provides new insights for studying the palaeoecology of some bird-like theropod dinosaurs.  相似文献   

11.
内蒙古鄂托克旗查布地区恐爪龙类足迹的发现及其意义   总被引:1,自引:0,他引:1  
内蒙古查布地区下白垩统中保存大量的兽脚类和蜥脚类恐龙足迹以及鸟类足迹化石,2014年再次对内蒙古鄂托克旗野外地质遗迹博物馆(8A和8B化石点)周边的地层进行系统考察,发现两个恐爪龙类恐龙(Deinonychosauria)的二趾型兽脚类足迹,这在鄂托克地区是首次发现。经对比研究,将其归入奔驰龙足迹属(Dromaeosauripus)。与奔驰龙足迹一起发现的还有其他两种兽脚类足迹(Asianopodus robustus和Grallator),反映了恐爪龙类恐龙的生活习性。此类足迹的发现不仅填补了内蒙驰龙足迹(Dromaeopodidae)的空白,增加了世界二趾型足迹的记录,也为鄂托克地区古生态与地层对比提供了素材。  相似文献   

12.
A remarkable specimen has been discovered of an Early Cretaceous pterosaur that has a tooth embedded in one of its cervical vertebrae: the tooth has been identified as one from a spinosaurid theropod dinosaur. This fossil is direct evidence that spinosaurs included items other than fish in their diet.  相似文献   

13.
Frazzetta TH  Kardong KV 《Nature》2002,416(6879):387-388
Prey-capture strategies in carnivorous dinosaurs have been inferred from the biomechanical features of their tooth structure, the estimated bite force produced, and their diet. Rayfield et al. have used finite-element analysis (FEA) to investigate such structure-function relationships in Allosaurus fragilis, and have found that the skull was designed to bear more stress than could be generated by simple biting. They conclude that this large theropod dinosaur delivered a chop-and-slash 'hatchet' blow to its prey, which it approached with its mouth wide open before driving its upper tooth row downwards. We argue that this mode of predation is unlikely, and that the FEA results, which relate to an 'overengineered' skull, are better explained by the biomechanical demands of prey capture. Understanding the mechanics of predation is important to our knowledge of the feeding habits of carnivorous dinosaurs and for accurate reconstruction their lifestyles.  相似文献   

14.
Zhang F  Zhou Z  Xu X  Wang X  Sullivan C 《Nature》2008,455(7216):1105-1108
Recent coelurosaurian discoveries have greatly enriched our knowledge of the transition from dinosaurs to birds, but all reported taxa close to this transition are from relatively well known coelurosaurian groups. Here we report a new basal avialan, Epidexipteryx hui gen. et sp. nov., from the Middle to Late Jurassic of Inner Mongolia, China. This new species is characterized by an unexpected combination of characters seen in several different theropod groups, particularly the Oviraptorosauria. Phylogenetic analysis shows it to be the sister taxon to Epidendrosaurus, forming a new clade at the base of Avialae. Epidexipteryx also possesses two pairs of elongate ribbon-like tail feathers, and its limbs lack contour feathers for flight. This finding shows that a member of the avialan lineage experimented with integumentary ornamentation as early as the Middle to Late Jurassic, and provides further evidence relating to this aspect of the transition from non-avian theropods to birds.  相似文献   

15.
Xu X  Wang K  Zhang K  Ma Q  Xing L  Sullivan C  Hu D  Cheng S  Wang S 《Nature》2012,484(7392):92-95
Numerous feathered dinosaur specimens have recently been recovered from the Middle-Upper Jurassic and Lower Cretaceous deposits of northeastern China, but most of them represent small animals. Here we report the discovery of a gigantic new basal tyrannosauroid, Yutyrannus huali gen. et sp. nov., based on three nearly complete skeletons representing two distinct ontogenetic stages from the Lower Cretaceous Yixian Formation of Liaoning Province, China. Y. huali shares some features, particularly of the cranium, with derived tyrannosauroids, but is similar to other basal tyrannosauroids in possessing a three-fingered manus and a typical theropod pes. Morphometric analysis suggests that Y. huali differed from tyrannosaurids in its growth strategy. Most significantly, Y. huali bears long filamentous feathers, thus providing direct evidence for the presence of extensively feathered gigantic dinosaurs and offering new insights into early feather evolution.  相似文献   

16.
Jones TD  Farlow JO  Ruben JA  Henderson DM  Hillenius WJ 《Nature》2000,406(6797):716-718
Modern birds have markedly foreshortened tails and their body mass is centred anteriorly, near the wings. To provide stability during powered flight, the avian centre of mass is far from the pelvis, which poses potential balance problems for cursorial birds. To compensate, avians adapted to running maintain the femur subhorizontally, with its distal end situated anteriorly, close to the animal's centre of mass; stride generation stems largely from parasagittal rotation of the lower leg about the knee joint. In contrast, bipedal dinosaurs had a centre of mass near the hip joint and rotated the entire hindlimb during stride generation. Here we show that these contrasting styles of cursoriality are tightly linked to longer relative total hindlimb length in cursorial birds than in bipedal dinosaurs. Surprisingly, Caudipteryx, described as a theropod dinosaur, possessed an anterior centre of mass and hindlimb proportions resembling those of cursorial birds. Accordingly, Caudipteryx probably used a running mechanism more similar to that of modern cursorial birds than to that of all other bipedal dinosaurs. These observations provide valuable clues about cursoriality in Caudipteryx, but may also have implications for interpreting the locomotory status of its ancestors.  相似文献   

17.
An exceptionally preserved Lower Cretaceous ecosystem   总被引:52,自引:0,他引:52  
Zhou Z  Barrett PM  Hilton J 《Nature》2003,421(6925):807-814
Fieldwork in the Early Cretaceous Jehol Group, northeastern China has revealed a plethora of extraordinarily well-preserved fossils that are shaping some of the most contentious debates in palaeontology and evolutionary biology. These discoveries include feathered theropod dinosaurs and early birds, which provide additional, indisputable support for the dinosaurian ancestry of birds, and much new evidence on the evolution of feathers and flight. Specimens of putative basal angiosperms and primitive mammals are clarifying details of the early radiations of these major clades. Detailed soft-tissue preservation of the organisms from the Jehol Biota is providing palaeobiological insights that would not normally be accessible from the fossil record.  相似文献   

18.
Norell M  Ji Q  Gao K  Yuan C  Zhao Y  Wang L 《Nature》2002,416(6876):36-37
Discoveries of integumentary coverings on non-avian theropod dinosaurs are becoming commonplace. But the only definitive evidence so far that any of these animals had feathers as we know them today has come from the oviraptorosaur Caudipteryx and the enigmatic coleurosaur Protarchaeopteryx, both of which are considered by some to be secondarily flightless birds. Here we describe the occurrence of pinnate feathers, which clearly feature a rachis and barbs, on a small, non-avian dromaeosaur from northern China. This finding indicates that feathers of modern aspect evolved in dinosaurs before the emergence of birds and flight.  相似文献   

19.
O'Connor PM  Claessens LP 《Nature》2005,436(7048):253-256
Birds are unique among living vertebrates in possessing pneumaticity of the postcranial skeleton, with invasion of bone by the pulmonary air-sac system. The avian respiratory system includes high-compliance air sacs that ventilate a dorsally fixed, non-expanding parabronchial lung. Caudally positioned abdominal and thoracic air sacs are critical components of the avian aspiration pump, facilitating flow-through ventilation of the lung and near-constant airflow during both inspiration and expiration, highlighting a design optimized for efficient gas exchange. Postcranial skeletal pneumaticity has also been reported in numerous extinct archosaurs including non-avian theropod dinosaurs and Archaeopteryx. However, the relationship between osseous pneumaticity and the evolution of the avian respiratory apparatus has long remained ambiguous. Here we report, on the basis of a comparative analysis of region-specific pneumaticity with extant birds, evidence for cervical and abdominal air-sac systems in non-avian theropods, along with thoracic skeletal prerequisites of an avian-style aspiration pump. The early acquisition of this system among theropods is demonstrated by examination of an exceptional new specimen of Majungatholus atopus, documenting these features in a taxon only distantly related to birds. Taken together, these specializations imply the existence of the basic avian pulmonary Bauplan in basal neotheropods, indicating that flow-through ventilation of the lung is not restricted to birds but is probably a general theropod characteristic.  相似文献   

20.
An Archaeopteryx-like theropod from China and the origin of Avialae   总被引:3,自引:0,他引:3  
Xu X  You H  Du K  Han F 《Nature》2011,475(7357):465-470
Archaeopteryx is widely accepted as being the most basal bird, and accordingly it is regarded as central to understanding avialan origins; however, recent discoveries of derived maniraptorans have weakened the avialan status of Archaeopteryx. Here we report a new Archaeopteryx-like theropod from China. This find further demonstrates that many features formerly regarded as being diagnostic of Avialae, including long and robust forelimbs, actually characterize the more inclusive group Paraves (composed of the avialans and the deinonychosaurs). Notably, adding the new taxon into a comprehensive phylogenetic analysis shifts Archaeopteryx to the Deinonychosauria. Despite only tentative statistical support, this result challenges the centrality of Archaeopteryx in the transition to birds. If this new phylogenetic hypothesis can be confirmed by further investigation, current assumptions regarding the avialan ancestral condition will need to be re-evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号