共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
利用电涡流缓速器调节车辆制动稳定性 总被引:1,自引:0,他引:1
利用电涡流缓速器制动力矩可控的特点,将电涡流缓速器的力矩输出进行适当的控制并施加在后轮上,与后轮制动器制动力共同形成了复合制动力.建立了车辆制动力的调节模型,理论上确定了电涡流缓速器的通电电流是车辆前轮制动器制动力的函数.实车模拟结果表明,后轮的地面制动力随前轮制动器制动力的变化关系,能较好地贴近车辆的理想制动力分配曲线,车辆较好地利用了地面的附着能力,改善了车辆的制动稳定性. 相似文献
3.
文章在考虑去磁效应的基础上建立电涡流缓速器数学计算模型,采用涡流折算系数法求出闭合磁路磁感应强度,推导出电涡流缓速器电磁制动力矩表达式;在某汽车制动系统有限公司现有产品的基础上,将圆形极柱优化设计为扇形极柱,并利用Maxwell有限元仿真软件对不同长度扇形极柱的新型电涡流缓速器模型的制动力矩进行仿真分析;将最终确定的新型电涡流缓速器通过有限元仿真和台架实验与原产品进行对比验证。结果表明:新型电涡流缓速器与传统电涡流缓速器的制动扭矩在不同转速下变化的规律基本一致,制动性能有明显提升;仿真结果和实验结果最大误差小于5%,证明了新型电涡流缓速器的有效性和优化设计的正确性。 相似文献
4.
装用电涡流缓速器的汽车制动性能分析 总被引:8,自引:4,他引:8
为掌握汽车上装用电涡流缓速器的制动性能及其对汽车制动性能的影响,建立装用缓速器的汽车制动时动力学方程式;结合道路试验,从下坡能力和平路上的减速能力两个方面考察电涡流缓速器的制动效能;通过道路试验,考察在中、高车速下,电涡流缓速器对汽车紧急制动的影响;从理论上分析了装用电涡流缓速器后,理想的汽车前、后车轮制动力的分配曲线的改变情况及其在紧急制动时对汽车制动稳定性影响。 相似文献
5.
基于PWM的电涡流缓速器控制系统 总被引:3,自引:0,他引:3
分析了现有汽车电涡流缓速器结构及工作原理,介绍了一种基于PWM的电涡流缓速器系统控制方案,详细介绍了系统驱动电路的结构、工作原理及控制方式,采用这种电路可以实现励磁电流的连续调节,从而实现恒速、恒流及恒转矩等高性能的缓速功能. 相似文献
6.
电涡流缓速器的工作原理及使用情况 总被引:6,自引:0,他引:6
电涡流缓速器是利用电磁原理将行驶车辆减速的一种装置,由于其减速是非接触(无摩擦)式的,可使行驶车辆在减速过程中比较平稳,这不仅大大提高了行驶车辆的安全性,同时也大大提高了制动蹄片和轮毂的使用寿命,因此电涡流缓速器在发达国家的客车和货车上都得到了比较广泛的应用.文章结合电涡流缓速器在安徽安凯汽车股份有限公司引进技术生产的安凯HFF6120系列客车上的使用情况,简单地介绍了其工作原理和试验结果. 相似文献
7.
研究了电磁旋转涡流制动器制动力矩控制方法。利用磁路分析法得到了制动力矩的计算公式,以及制动力矩与励磁电流及列车速度的数学关系,从而确定制动力矩控制系统的总体方案,阐述系统工作原理,说明系统各主要组成模块,建立其仿真模型,并根据系统总体方案完成模块集成。介绍了PID(比例-积分-微分)控制、模糊控制、模糊自适应PI控制3种制动力矩控制算法,说明控制器设计步骤。完成仿真计算,并对结果进行对比分析。结果表明,相对于开环控制,3种控制算法都能有效地控制制动力矩。此外,无论是系统瞬态性能指标,还是稳态性能指标,都是模糊自适应PI控制表现最佳,模糊控制次之,PID控制相对最差。 相似文献
8.
为实现自励式缓速器制动力矩的智能化控制,以流过励磁线圈的电流为基准划分了制动力矩档位,提出了以可控硅导电角为控制对象的制动力矩控制方法.分析了励磁线圈驱动电路及可控硅导电角触发电路,并基于可控硅导电角时序图,推导了各种档位下可控硅导电角的计算公式及低车速时最高档位判别公式,为实现自励式缓速器制动力矩的智能化控制提供了理论指导.试验测试结果表明,自励式缓速器可基本上实现制动力矩控制的精确性和实时性. 相似文献
9.
《江苏大学学报(自然科学版)》2006,27(3):224
江苏大学的“一种制动力矩可分挡的永久磁铁式缓速器”技术被授予国家实用新型专利.实用新型以永久磁铁作为磁源的车用缓速器,特指一种制动力矩可分挡的永久磁铁式缓速器.设有一套制动装置,包括一个安装在发动机输出轴上的鼓形转子,一个固定在变速箱上的定子.定子部分主要包括磁铁保持架、固定磁铁支架、活动磁铁支架、永久磁铁及操作机构.磁铁保持架内有两列磁铁,其特征在于每排磁铁有若干组永久磁铁,每一组磁铁由多块极性排列相同的磁铁组成,各组磁铁之间的磁极交替反向排列,各自固定在磁铁支架上.该结构紧凑简单,易于实现.通过改变永久磁铁工作的磁极组数,设置若干制动挡位,使永磁式缓速器根据车辆实际情况的需要提供大小不同的制动力矩. 相似文献
10.
自适应阶梯模糊控制在电涡流缓速器中的应用 总被引:2,自引:1,他引:2
分析了电涡流缓速器在制动过程中所要求的恒速模式及在制动中出现的热衰退现象,提出了采用自适应阶梯模糊控制方法.该方法采用分段调节的机制,通过在线改变规则中的调整因子α,使得电涡流缓速器控制器根据实时转速和转子盘温度的变化,调整模糊控制规则,最终使得电涡流缓速器输出的励磁电流根据转速和转子盘温度实时调节.通过在电涡流缓速器转鼓实验台上对该算法进行验证,对比常规的控制方法,该方法具有更好的控制性能. 相似文献
11.
在对车辆制动过程进行力学分析和机械自动变速重型车辆降挡和不降挡两种制动控制策略的比较基础上,提出了在不降挡的前提下,当发动机辅助制动力矩影响行驶稳定性时分离离合器;当车速降低到发动机辅助制动力矩不影响行驶稳定性时接合离合器的控制策略.并对制动过程中分离离合器后是否再次接合离合器这2种情况下制动时的制动减速度、制动时间和制动距离进行比较分析.分析表明当发动机辅助制动力矩不影响行驶稳定性时,接合离合器可明显减少制动时间和制动距离. 相似文献
12.
纯电动汽车电液复合再生制动控制 总被引:1,自引:0,他引:1
针对纯电动汽车电液复合再生制动过程机电制动力的动态分配问题,通过对制动动力学和ECE R13-H制动法规的分析,从理论上确定纯电动汽车电液复合再生制动的安全运行范围。在安全制动范围内,开发了以最大限度回收能量为目标,达到需求制动强度而前、后轴又不抱死的再生制动控制流程,生成机电制动力分配矩阵。以制动强度分别为0.2,0.3,0.4,0.5和0.6,初始车速为16.67 m/s,结合ECE-EUDC道路循环,构建新的仿真循环,将车辆参数、制动力分配矩阵、道路循环嵌入ADVISOR2002软件。研究结果表明:仿真运行1个道路循环后,电池荷电状态SOC(State of charge)相对原策略有较明显的提高,提高幅度达4.5%,较好地回收了制动能量,更重要的是保证了制动安全,表明开发的控制策略是有效的。 相似文献
13.
文章根据制动系统的结构制定了常规制动和防抱死制动的控制策略,在Matlab/Simulink平台上建立了控制策略的仿真模型.仿真结果表明,控制策略能满足制动安全性和驾驶员感觉的要求,并能回收相当比例的制动能量.文中建立了实车测试系统来验证该控制策略,试验结果与仿真结果类似,表明集成控制系统满足设计要求. 相似文献
14.
降低车辆的横摆力矩对改善车辆制动稳定性具有重要意义。在分析车辆制动时轮胎与路面接触力学特性的基础上,推导出横摆力矩与前轴两侧车轮的加减速度差、制动轮缸压力差之间的相互关系,提出了一种基于车轮加减速度差来对制动轮缸压力进行模糊协调调节,从而提高制动稳定性的控制方法。参照国家标准,在不同条件下进行道路试验。道路测试表明,相对于各个车轮独立控制,模糊协调控制降低了车辆横摆力矩,改善了车辆的制动稳定性,是一种新的有效的控制方法。 相似文献
15.
制动意图识别作为新型线控制动系统控制的先决条件,其识别结果的优劣直接影响车辆控制系统的精度,进而影响特定工况下的车辆行车安全性,因此为了提高车辆的主动安全性,提升车辆的制动性能,针对车辆动力学中的纵向稳定性控制问题,以制动意图为切入点,介绍了目前制动意图的分类,概述了基于制动意图识别的车辆动力学控制的国内外研究现状;结合制动意图识别特征的选取问题,重点对比分析了几种典型的制动意图识别方法,包括模糊推理系统、神经网络、自适应神经模糊推理系统、隐马尔可夫模型和聚类分析;结合当下研究现状指出了合理选取特征参数、转换输出目标、多标准评价体系是面向车辆动力学控制的制动意图识别的研究重点和方向。 相似文献
16.
牵引力控制系统中最优驱动力矩控制 总被引:3,自引:0,他引:3
为了解决低附着路面上发动机输出力矩过大引起的驱动轮过度滑转及路面附着系数利用率低的问题,提出了牵引力控制系统中最优驱动力矩控制的概念,并给出了其实现方法.将理论分析结果和实车试验数据特点相结合,利用参考车速来估算路面附着系数并由此计算最优驱动力矩.利用PID控制器控制发动机动态输出力矩以实现最优驱动力矩控制.实车试验结果表明;低附路面上该方法能够有效控制发动机的驱动力矩,使得驱动轮的滑转率保持在最优滑转率处,对路面附着系数的利用率达到90%以上,该方法能够提高车辆在低附路面上的驱动能力. 相似文献
17.
一种改进的再生制动控制策略优化 总被引:1,自引:0,他引:1
为了充分利用混合动力汽车的再生制动能量,提高整车燃油经济性,通过分析混合动力汽车再生制动系统的工作原理,依据理想的前后轮制动力分配曲线,基于比例控制策略,提出了一种并行制动力的分配策略,以对摩擦制动力和再生制动力进行合理分配.进而以平均再生制动力为目标,选取制动控制策略控制曲线上的关键点坐标为控制变量,对并行再生制动控制策略进行了优化设计.选取Saturn SL1为研究车型,在市区15工况下进行了仿真研究.结果表明,优化后的并行控制策略既可以满足制动安全性的要求又可以回收更多的制动能量. 相似文献