首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na channels in skeletal muscle concentrated near the neuromuscular junction   总被引:2,自引:0,他引:2  
K G Beam  J H Caldwell  D T Campbell 《Nature》1985,313(6003):588-590
Neuronal function depends crucially on the spatial segregation of specific membrane proteins, particularly the segregation associated with sites of synaptic contact. Understanding the factors governing this localization of proteins is a major goal of cellular neurobiology. A conspicuous example of synaptic specialization is the almost exclusive localization of vertebrate skeletal muscle acetylcholine (ACh) receptors to the subsynaptic membrane of the neuromuscular junction (for example, refs 1,2). The localization of other membrane proteins in skeletal muscle has been much less studied, but a knowledge of their distribution is crucial for understanding the factors governing regional specialization. We have explored the distribution in muscle of the voltage-gated Na channel responsible for the action potential using the loose patch-clamp technique, and have measured Na currents in 5-10 micron-diameter membrane patches as a function of distance from the end plate region of snake and rat muscle fibres. Here we report that the Na current density immediately adjacent to the endplate is 5-10-fold higher than at regions away from the endplate. The increased Na current density falls off rapidly with distance, reaching the background level 100-200 micron from the endplate. Although one might expect ACh receptors to be concentrated near the region of ACh release, such a concentration for Na channels, which propagate the impulse throughout the length of the cell, is surprising and suggests that factors similar to those responsible for concentrating ACh receptors at the endplate also operate to concentrate Na channels.  相似文献   

2.
K Imoto  C Busch  B Sakmann  M Mishina  T Konno  J Nakai  H Bujo  Y Mori  K Fukuda  S Numa 《Nature》1988,335(6191):645-648
The structure-function relationship of the nicotinic acetylcholine receptor (AChR) has been effectively studied by the combination of complementary DNA manipulation and single-channel current analysis. Previous work with chimaeras between the Torpedo californica and bovine AChR delta-subunits has shown that the region comprising the hydrophobic segment M2 and its vicinity contains an important determinant of the rate of ion transport through the AChR channel. It has also been suggested that this region is responsible for the reduction in channel conductance caused by divalent cations and that segment M2 contributes to the binding site of noncompetitive antagonists. To identify those amino acid residues that interact with permeating ions, we have introduced various point mutations into the Torpedo AChR subunit cDNAs to alter the net charge of the charged or glutamine residues around the proposed transmembrane segments. The single-channel conductance properties of these AChR mutants expressed in Xenopus laevis oocytes indicate that three clusters of negatively charged and glutamine residues neighbouring segment M2 of the alpha-, beta-, gamma- and delta-subunits, probably forming three anionic rings, are major determinants of the rate of ion transport.  相似文献   

3.
Alteration of ionic selectivity of a K+ channel by mutation of the H5 region   总被引:27,自引:0,他引:27  
A J Yool  T L Schwarz 《Nature》1991,349(6311):700-704
The high ionic selectivity of K+ channels is a unifying feature of this diverse class of membrane proteins. Though K+ channels differ widely in regulation and kinetics, physiological studies have suggested a common structure: a single file pore containing multiple ion-binding sites and having broader vestibules at both ends. We have used site-directed mutagenesis and single-channel recordings to identify a molecular region that influences ionic selectivity in a cloned A-type K+ channel from Drosophila. Single amino-acid substitutions in H5, the fifth hydrophobic region, enhanced the passage of NH4+ and Rb+, ions with diameters larger than K+, without compromising the ability of the channel to exclude the smaller cation, Na+. The mutations that substantially altered selectivity had little effect on the gating properties of the channel. We conclude that the H5 region is likely to line the pore of the K+ channel.  相似文献   

4.
The combination of complementary DNA expression and single-channel current analysis provides a powerful tool for studying the structure-function relationship of the nicotinic acetylcholine receptor (AChR) (refs 1-5). We have previously shown that AChR channels consisting of subunits from different species, expressed in the surface membrane of Xenopus oocytes, can be used to relate functional properties to individual subunits. Here we report that, in extracellular solution of low divalent cation concentration, the bovine AChR channel has a smaller conductance than the Torpedo AChR channel. Replacement of the delta-subunit of the Torpedo AChR by the bovine delta-subunit makes the channel conductance similar to that of the bovine AChR channel. To locate the region in the delta-subunit responsible for this difference, we have constructed chimaeric delta-subunit cDNAs with different combinations of the Torpedo and bovine counterparts. The conductances of AChR channels containing chimaeric delta-subunits suggest that a region comprising the putative transmembrane segment M2 and the adjacent bend portion between segments M2 and M3 is involved in determining the rate of ion transport through the open channel.  相似文献   

5.
Vergani P  Lockless SW  Nairn AC  Gadsby DC 《Nature》2005,433(7028):876-880
ABC (ATP-binding cassette) proteins constitute a large family of membrane proteins that actively transport a broad range of substrates. Cystic fibrosis transmembrane conductance regulator (CFTR), the protein dysfunctional in cystic fibrosis, is unique among ABC proteins in that its transmembrane domains comprise an ion channel. Opening and closing of the pore have been linked to ATP binding and hydrolysis at CFTR's two nucleotide-binding domains, NBD1 and NBD2 (see, for example, refs 1, 2). Isolated NBDs of prokaryotic ABC proteins dimerize upon binding ATP, and hydrolysis of the ATP causes dimer dissociation. Here, using single-channel recording methods on intact CFTR molecules, we directly follow opening and closing of the channel gates, and relate these occurrences to ATP-mediated events in the NBDs. We find that energetic coupling between two CFTR residues, expected to lie on opposite sides of its predicted NBD1-NBD2 dimer interface, changes in concert with channel gating status. The two monitored side chains are independent of each other in closed channels but become coupled as the channels open. The results directly link ATP-driven tight dimerization of CFTR's cytoplasmic nucleotide-binding domains to opening of the ion channel in the transmembrane domains. This establishes a molecular mechanism, involving dynamic restructuring of the NBD dimer interface, that is probably common to all members of the ABC protein superfamily.  相似文献   

6.
Single Na+ channel currents observed in cultured rat muscle cells   总被引:28,自引:0,他引:28  
F J Sigworth  E Neher 《Nature》1980,287(5781):447-449
The voltage- and time-dependent conductance of membrane Na+ channels is responsible for the propagation of action potentials in nerve and muscle cells. In voltage-step-clamp experiments on neurone preparations containing 10(4)-10(7) Na+ channels the membrane conductance shows smooth variations in time, but analysis of fluctuations and other eivdence suggest that the underlying single-channel conductance changes are stochastic, rapid transitions between 'closed' and 'open' states as seen in other channel types. We report here the first observations of currents through individual Na+ channels under physiological conditions using an improved version of the extracellular patch-clamp technique on cultured rat muscle cells. Our observations support earlier inferences about channel gating and show a single-channel conductance of approximately 18 pS.  相似文献   

7.
D J Nelson  F Sachs 《Nature》1979,282(5741):861-863
The extracellular patch clamp technique developed by Neher et al. to record the responses of single channels in skeletal muscle has provided firm evidence for the two-state nature of the conductance event in nicotinic endplate channels. We report here the use of the extracellular patch technique to record single-channel responses from tissue-cultured chick skeletal muscle cells. The temperature dependence of channel conductance and gating kinetics shows no evidence of discontinuous behaviour between 17 and 37 degrees C.  相似文献   

8.
Kelley SP  Dunlop JI  Kirkness EF  Lambert JJ  Peters JA 《Nature》2003,424(6946):321-324
5-hydroxytryptamine type 3 (5-HT3) receptors are cation-selective transmitter-gated ion channels of the Cys-loop superfamily. The single-channel conductance of human recombinant 5-HT3 receptors assembled as homomers of 5-HT3A subunits, or heteromers of 5-HT3A and 5-HT3B subunits, are markedly different, being 0.4 pS (refs 6, 9) and 16 pS (ref. 7), respectively. Paradoxically, the channel-lining M2 domain of the 5-HT3A subunit would be predicted to promote cation conduction, whereas that of the 5-HT3B subunit would not. Here we describe a determinant of single-channel conductance that can explain these observations. By constructing chimaeric 5-HT3A and 5-HT3B subunits we identified a region (the 'HA-stretch') within the large cytoplasmic loop of the receptor that markedly influences channel conductance. Replacement of three arginine residues unique to the HA-stretch of the 5-HT3A subunit by their 5-HT3B subunit counterparts increased single-channel conductance 28-fold. Significantly, ultrastructural studies of the Torpedo nicotinic acetylcholine receptor indicate that the key residues might frame narrow openings that contribute to the permeation pathway. Our findings solve the conundrum of the anomalously low conductance of homomeric 5-HT3A receptors and indicate an important function for the HA-stretch in Cys-loop transmitter-gated ion channels.  相似文献   

9.
Calcium entry through stretch-inactivated ion channels in mdx myotubes.   总被引:18,自引:0,他引:18  
A Franco  J B Lansman 《Nature》1990,344(6267):670-673
Recent advances in understanding the molecular basis of human X-linked muscular dystrophies have come from the identification of dystrophin, a cytoskeletal protein associated with the surface membrane. Although there is little or virtually no dystrophin in affected individuals, it is not known how this causes muscle degeneration. One possibility is that the membrane of dystrophic muscle is weakened and becomes leaky to Ca2+. In muscle from mdx mice, an animal model of the human disease, intracellular Ca2+ is elevated and associated with a high rate of protein degradation. The possibility that a lack of dystrophin alters the resting permeability of skeletal muscle to Ca2+ prompted us to compare Ca2(+)-permeable ionic channels in muscle cells from normal and mdx mice. We now show that recordings of single-channel activity from mdx myotubes are dominated by the presence of Ca2(+)-permeable mechano-transducing ion channels. Like similar channels in normal skeletal muscle, they are rarely open at rest, but open when the membrane is stretched by applying suction to the electrode. Other channels in mdx myotubes, however, are often open for extended periods of time at rest and close when suction is applied to the electrode. The results show a novel type of mechano-transducing ion channel in mdx myotubes that could provide a pathway for Ca2+ to leak into the cell.  相似文献   

10.
Selected actions of neurotransmitters and hormones on ion channels in nerve and muscle cells are now thought to be mediated by cyclic AMP-dependent protein phosphorylation. Although the cyclic AMP-dependent protein kinase (cAMP-PK) affects the cellular properties of several neurones, its mode of action at the single-channel level has not been characterized. In addition, little is known about the identity or subcellular localization of the phosphoproteins that control channel activity and, in particular, whether the critical substrate proteins are cytoplasmic or membrane-associated. In Aplysia sensory neurones, serotonin produces a slow modulatory synaptic potential mediated by cAMP-PK that contributes to presynaptic facilitation and behavioural sensitization. Previously, we have found that serotonin acts on cell-attached membrane patches to produce prolonged all-or-none closures of a specific class of K+ channels (S channels) whose gating is weakly dependent on voltage and independent of intracellular calcium. We demonstrate here that in cell-free membrane patches from Aplysia sensory neurones, the purified catalytic subunit of cAMP-PK produces all-or-none closures of the S channel, simulating most (but not all) aspects of the action of serotonin on cell-attached patches. This result suggests that protein kinase acts on the internal surface of the membrane to phosphorylate either the channel itself or a membrane-associated protein that regulates channel activity.  相似文献   

11.
H A Kolb  M J Wakelam 《Nature》1983,303(5918):621-623
The concept of purinergic neurotransmission, first proposed by Burnstock, has been confirmed in various cell types. We show here, by the patch-clamp method, that external ATP in micromolar concentrations (1-100 microM) activates cation channels in the membranes of fusion-competent myoblasts and myotubes. In cell-attached membrane patches of myoblasts and myotubes the mean number of simultaneously activated channels increases with time after external ATP application. In myoblasts only one population of channels having a mean single-channel conductance of gamma=43 pS was found, while in myotubes two populations with gamma 1=48 pS and gamma 2=20 pS were observed. Treatment of myotube membranes with acetylcholine (ACh) or carbachol resulted in two populations of channels which had conductance values and voltage-dependent mean channel lifetimes similar to those produced in response to ATP. The results show that embryonic skeletal muscle cells contain cation channels sensitive to ATP and provide evidence for a neurotransmitter-like action of ATP on these cells.  相似文献   

12.
R L Huganir  A H Delcour  P Greengard  G P Hess 《Nature》1986,321(6072):774-776
Recent studies have provided evidence for a role of protein phosphorylation in the regulation of the function of various potassium and calcium channels (for reviews, see refs 1, 2). As these ion channels have not yet been isolated and characterized, it has not been possible to determine whether phosphorylation of the ion channels themselves alters their properties or whether some indirect mechanism is involved. In contrast, the nicotinic acetylcholine receptor, a neurotransmitter-dependent ion channel, has been extensively characterized biochemically and has been shown to be directly phosphorylated. The phosphorylation of this receptor is catalysed by at least three different protein kinases (cyclic AMP-dependent protein kinase, protein kinase C and a tyrosine-specific protein kinase) on seven different phosphorylation sites. However, the functional significance of phosphorylation of the receptor has been unclear. We have now examined the functional effects of phosphorylation of the nicotinic acetylcholine receptor by cAMP-dependent protein kinase. We investigated the ion transport properties of the purified and reconstituted acetylcholine receptor before and after phosphorylation. We report here that phosphorylation of the nicotinic acetylcholine receptor on the gamma- and delta-subunits by cAMP-dependent protein kinase increases the rate of the rapid desensitization of the receptor, a process by which the receptor is inactivated in the presence of acetylcholine (ACh). These results provide the first direct evidence that phosphorylation of an ion channel protein modulates its function and suggest that phosphorylation of postsynaptic receptors in general may play an important role in synaptic plasticity.  相似文献   

13.
Cyclic GMP-sensitive conductance of retinal rods consists of aqueous pores   总被引:31,自引:0,他引:31  
A L Zimmerman  D A Baylor 《Nature》1986,321(6065):70-72
The surface membrane of retinal rod and cone outer segments contains a cation-selective conductance which is activated by 3',5'-cyclic guanosine monophosphate (cGMP). Reduction of this conductance by a light-induced decrease in the cytoplasmic concentration of cGMP appears to generate the electrical response to light, but little is known about the molecular nature of the conductance. The estimated unitary conductance is so small that ion transport might occur via either a carrier or a pore mechanism. Here we report recordings of cGMP-activated single-channel currents from excised rod outer segment patches bathed in solutions low in divalent cations. Two elementary conductances, of approximately 24 and 8 pS, were observed. These conductances are too large to be accounted for by carrier transport, indicating that the cGMP-activated conductance consists of aqueous pores. The dependence of the channel activation on the concentration of cGMP suggests that opening of the pore is triggered by cooperative binding of at least three cGMP molecules.  相似文献   

14.
B Sakmann  J Patlak  E Neher 《Nature》1980,286(5768):71-73
High resolution measurements of the current through individual ion channels activated by acetylcholine (AChR- channels) in frog muscle have shown that these currents are discrete pulse-like events with durations of a few milliseconds. Fluctuation and relaxation measurements of end-plate currents have led to the conclusion that the rate of channel opening increases with agonist concentrations, and that the channel, once open, closes spontaneously. Katz and Thesleff have shown, however, that in the continued presence of ACh, the initial end-plate current declines to an equilibrium value with a time constant of several seconds. This reversible phenomenon is referred to as receptor desensitization. We report here that in the presence of ACh concentrations sufficient to cause desensitization, single channel current pulses appear in groups. From the temporal sequence of the pulses, we have derived estimates of the rates of activation and desensitization of the AChR-channel.  相似文献   

15.
A J Harborne  M E Smith 《Nature》1979,282(5734):85-87
The entire surface membrane of denervated skeletal muscle is sensitive to the neuromuscular transmitter, acetylcholine (ACh), whereas in innervated muscle only the junctional area is sensitive. It has been proposed that this difference is due to a 'trophic' effect exerted by ACh in innervated muscle to keep the extrajunctional regions of the surface membrane insensitive to its depolarising action. Several studies have demonstrated an agonist-induced potentiation of ACh sensitivity, followed by desensitisation, at the endplate region of normal muscles. The potentiation has been attributed to a cooperative action of ACh on the receptors. Desensitisation of the extrajunctional regions of denervated muscles by ACh has also been described. We now provide evidence that the transmitter itself potentiates the ACh contracture and depolarisation responses of the denervated muscles of the rat in vitro and that it produces this effect by increasing the number of available ACh receptors on the surface membrane.  相似文献   

16.
D Kim  D L Lewis  L Graziadei  E J Neer  D Bar-Sagi  D E Clapham 《Nature》1989,337(6207):557-560
Muscarinic receptors of cardiac pacemaker and atrial cells are linked to a potassium channel (IK.ACh) by a pertussis toxin-sensitive GTP-binding protein. The dissociation of G-proteins leads to the generation of two potential transducing elements, alpha-GTP and beta gamma. IK.ACh is activated by G-protein alpha- and beta gamma-subunits applied to the intracellular surface of inside-out patches of membrane. beta gamma has been shown to activate the membrane-bound enzyme phospholipase A2 in retinal rods. Arachidonic acid, which is produced from the action of phospholipase A2 on phospholipids, is metabolized to compounds which may act as second messengers regulating ion channels in Aplysia. Muscarinic receptor activation leads to the generation of arachidonic acid in some cell lines. We therefore tested the hypothesis that beta gamma activates IK.ACh by stimulation of phospholipase A2. When patches were first incubated with antibody that blocks phospholipase A2 activity, or with the lipoxygenase inhibitor, nordihydroguaiaretic acid, beta gamma failed to activate IK.ACh. Arachidonic acid and several of its metabolites derived from the 5-lipoxygenase pathway, activated the channel. Blockade of the cyclooxygenase pathway did not inhibit arachidonic acid-induced channel activation. We conclude that the beta gamma-subunit of G-proteins activates IK.ACh by stimulating the production of lipoxygenase-derived second messengers.  相似文献   

17.
G E Breitwieser  G Szabo 《Nature》1985,317(6037):538-540
Guanine nucleotide binding proteins, interchangeably called N or G proteins, seem to be the primary signal-transducing components of various agonist-induced cell membrane functions. In the heart, G proteins have been implicated in beta-adrenergic modulation of the slow inward Ca2+ current. We have investigated the role of G proteins in muscarinic activation of an inwardly rectifying, acetylcholine (ACh)-induced K+ current (IACh), and beta-adrenergic activation of an (isoprenaline)-induced Ca2+ current (Isi). Here we report that intracellular application of the non-hydrolysable GTP analogue 5'-guanylylimidodiphosphate (GppNHp) brought about an agonist-induced, antagonist-resistant, persistent activation of IACh and Isi. This functional uncoupling of channel from receptor suggests that the muscarinic receptor and the IACh channel are separate molecular structures. Membrane conductance responses to sequential activation of muscarinic and beta-adrenergic receptors demonstrate that in contrast to the muscarinic inhibition of Isi, muscarinic stimulation of IACh is mediated by a G protein via a pathway that does not involve adenylate cyclase. Taken together, the results support the notion that agonist is required to induce GppNHp binding and/or activation of the G proteins. Once triggered by agonist, the control system remains maximally activated, thereby transforming the cell so that it no longer responds to subsequent homologous receptor-mediated signals.  相似文献   

18.
Picollo A  Pusch M 《Nature》2005,436(7049):420-423
ClC-4 and ClC-5 are members of the CLC gene family, with ClC-5 mutated in Dent's disease, a nephropathy associated with low-molecular-mass proteinuria and eventual renal failure. ClC-5 has been proposed to be an electrically shunting Cl- channel in early endosomes, facilitating intraluminal acidification. Motivated by the discovery that certain bacterial CLC proteins are secondary active Cl-/H+ antiporters, we hypothesized that mammalian CLC proteins might not be classical Cl- ion channels but might exhibit Cl(-)-coupled proton transport activity. Here we report that ClC-4 and ClC-5 carry a substantial amount of protons across the plasma membrane when activated by positive voltages, as revealed by measurements of pH close to the cell surface. Both proteins are able to extrude protons against their electrochemical gradient, demonstrating secondary active transport. H+, but not Cl-, transport was abolished when a pore glutamate was mutated to alanine (E211A). ClC-0, ClC-2 and ClC-Ka proteins showed no significant proton transport. The muscle channel ClC-1 exhibited a small H+ transport that might be physiologically relevant. For ClC-5, we estimated that Cl- and H+ transport contribute about equally to the total charge movement, raising the possibility that the coupled Cl-/H+ transport of ClC-4 and ClC-5 is of significant magnitude in vivo.  相似文献   

19.
P Gardner  D C Ogden  D Colquhoun 《Nature》1984,309(5964):160-162
Hypotheses concerning the mechanism by which acetylcholine-like agonists cause ion channels to open often suppose that the receptor-ionophore complex can exist in either of two discrete conformations, open and shut. On the basis of noise analysis it has been reported that certain agonists open ion channels of lower conductance than usual, though many potent agonists give similar conductances, and hence that differences in the conductance of ion channels opened by different agonists may contribute to differences in efficacy. Here we have reinvestigated this question by recording single ion channel currents evoked by acetylcholine-like agonists on embryonic rat muscle in tissue culture and on adult frog muscle endplate. Ten different agonists (Fig. 1) were tested, including several that noise analysis has suggested have a low conductance. The single-channel conductance was found to be the same, within a few per cent, for all 10 agonists. It seems that noise analysis has given erroneously low conductances in some cases. Therefore efficacy differences do not depend on differences in single-channel conductance evoked by various agonists but presumably on the position of the open-shunt equilibrium of the agonist-channel complexes.  相似文献   

20.
膜片钳技术是一种以记录离子通道的离子电流来反映细胞膜上单一的或多个的离子通道分子活动的技术.综述了膜片钳技术在心血管药理学中的应用,特别是对与心肌有关的离子通道做了细致地阐述.对膜片钳技术在SDS发病机制研究中的应用前景作了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号