共查询到18条相似文献,搜索用时 93 毫秒
1.
设G为有限群,H是G的子群.称H是G的S-拟正规子群,如果对G的任意Sylow 子群P,有HP=PH;称H是G的S-拟正规嵌入子群,若H的Sylow子群为G的某个S-拟正规子群的Sylow子群;称H是G的C*-正规子群,如果G有正规子群K使得G=HK且满足H∩K在G中是S-拟正规嵌入的.设d是p-群P的最小生成元个数.考虑P的d个极大子群构成的集合Μd(P)=P1,...,Pd且使得它们的交是P的Frattini子群Φ(P).对Μd(P)中的群在满足C*-正规假设条件下群的结构进行了研究,并推广了最近的一些结论. 相似文献
2.
有限群的弱c-正规子群及其性质 总被引:2,自引:0,他引:2
称群G的子群H为G的弱c—正规子群,如果存在G的次正规子群K,使得G=KH且K∩H≤HG,其中HG=∩g∈gH^g,本讨论了弱c—正规子群的性质并给出一个群为可解群的一些条件。 相似文献
3.
利用弱c#-正规子群研究有限群的p-幂零性,得到以下结论:①设G是群,H△G,使得G/H为P-幂零,PESylp(G),若P的极大子群皆在G中弱c#-正规且NG(P)为P-幂零,则G为P-幂零.②G是群,HqG使得G/H为P-幂零,P∈Sy/p(H),若P的2-极大子群皆在G中弱c#-正规且NG(P)为p-N;零的,则G为P-幂零. 相似文献
4.
利用有限群G的子群、Sylowp-子群、c*-拟正规嵌入子群,研究了有限群G的幂零性. 相似文献
5.
利用弱c#-正规子群研究有限群的p-幂零性,得到以下结论:①设G是群,HG,使得G/H为p-幂零,P∈Sylp(G),若P的极大子群皆在G中弱c#-正规且NG(P)为p-幂零,则G为p-幂零.②G是群,HG使得G/H为p-幂零,P∈Sylp(H),若P的2-极大子群皆在G中弱c#-正规且NG(P)为p-幂零的,则G为p-幂零. 相似文献
6.
有限群的s-正规子群Ⅱ 总被引:1,自引:0,他引:1
张新建 《淮阴师范学院学报(自然科学版)》2004,3(2):87-89
群G的一个子群H称为在G中s 正规,如果存在G的一个次正规子群K使得G=HK且H∩K≤HSG,其中HSG是包含在H中的G的最大次正规子群.本文继续利用子群的s 正规性研究群的结构. 相似文献
7.
8.
引入了弱s*-拟正规嵌入子群的概念,并利用弱s*-拟正规嵌入子群研究p-幂零群的构造,推广了最近的一些结果. 相似文献
9.
群G的子群H称为G的正规嵌入子群, 如果对于|H|的每个素因子p, 存在G的一个正规子群K,使得H的一个Sylow p-子群也是K的一个Sylow p-子群. 假设对于G的每个非循环Sylow子群P有一个子群D,使得1<|D|<|P|,且P的所有阶为|D|和2|D|(若P是非交换2-群且|P:D|>2)的子群H是G的正规嵌入子群, 得到G为p-幂零群以及超可解群的一些充分条件, 部分结果被推广到群系. 相似文献
10.
群G的子群H称为在G中是弱SS拟正规可补的,如果G中存在一个子群T,使得G=HT且H∩T≤HSSG,其中HSSG表示含在H中G的某个SS拟正规子群.利用弱SS拟正规可补子群的概念,得到关于p幂零群和幂零群的一些新刻画. 相似文献
11.
赵涛 《苏州大学学报(医学版)》2011,27(1)
设P是有限群G的一个满足(|G|,p-1)=1(或NG(P)为p-幂零群)的一个Sylow p-子群.证明了如果P的每个极大子群都在G中c*-正规或半覆盖-避开,则G为p-幂零群.本文的结果统一和改进了一些已有的结论. 相似文献
12.
杜春英 《苏州大学学报(医学版)》2009,25(4):20-24
H为群G的子群,如果存在G的正规子群K使得G=HK并且H∩K在G中是S-拟正规嵌入的,我们称H在G中是c^*-正规的.我们利用群G的Sylow子群的2-极大子群的c^*-正规性来刻划群的结构,一些已知的结果得到推广. 相似文献
13.
称群G的一个子群H在G中弱c-正规,若存在G的一个次正规子群K,使G=H K且H∩K≤HG.主要利用子群的弱c-正规性对有限群结构的影响,得到了有限群超可解的若干充分条件. 相似文献
14.
15.
称群G的一个子群H在G中弱s-置换嵌入的,如果存在G的一个次正规子群T和包含在H中的G的一个s-置换嵌入子群Hse,使得G=HT且H∩T≤Hse.利用弱s-置换嵌入子群研究有限群的p-幂零性,推广了以往的一些结果. 相似文献
16.
设G为有限群且H≤G,如果存在G的p-幂零子群K,使得G=HK,则称子群H在G中p-幂零可补.将上述条件局部化,即在群G的Sylow子群的正规化子中考察这一性质与有限群构造之间的关系,得到一些有关群G p-幂零与超可解的新结果. 相似文献
17.
18.
唐曾林 《湖南文理学院学报(自然科学版)》2008,20(1):9-12
令F是一个包含超可解群类的饱和群系,H是群G 的一个可解正规子群,满足G/N∈F, 如果F(H)的每个非循环Sylow-子群的极大子群在G中C-可补,那么G∈F. 相似文献