首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
用凝胶-燃烧法合成锂离子正极材料LiAl0.1Mn1.9O4,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、循环伏安法(CV)和充放电测试对样品进行了表征.结果表明,凝胶-燃烧法在800℃烧结12h合成掺铝后的LiAl0.1Mn1.9O4样品形貌比没有掺铝的更规整,电化学的循环性能更好.  相似文献   

2.
通过溶胶-凝胶法合成LiAl0.1Mn1.9O4,XRD的结果表明掺杂少量的铝后并没有改变晶体的结构。利用恒流充放电测试手段比较研究了尖晶石型的LiAl0.1Mn1.9O4,铝的掺杂后的LiAl0.1Mn1.9O4比没有掺杂的LiMn2O4更好的可逆性能,更好的循环性能。  相似文献   

3.
通过溶胶-凝胶法合成LiAl0.1Mn1.9O4,XRD的结果表明掺杂少量的铝后并没有改变晶体的结构。利用恒流充放电测试手段比较研究了尖晶石型的LiAl0.1Mn1.9O4,XRD铝的掺杂后的LiAl0.1Mn1.9O4,XRD比没有掺杂的LiMn2O4更好的可逆性能,更好的循环性能。  相似文献   

4.
采用草酸铵共沉淀-高温固相烧结法合成了高电压尖晶石正极材料LiNi0.5Mn1.5O4及其掺杂改性材料LiNi0.4Mg0.1Mn1.5O4.采用X射线衍射(XRD)、扫描电子显微镜(SEM)、恒流充放电测试等对所合成样品进行表征.XRD测试表明所合成的样品具有尖晶石结构,空间群为Fd3m.电化学测试表明,样品有两个主放电平台,分别为4.7V和4.1V.经过800℃煅烧的样品LiNi0.5Mn1.5O4具有最好的倍率性能.经过900℃煅烧的样品具有最好的循环性能,以0.1C充放电,最高放电比容量达到124.2mAh.g-1,循环30次后容量保持率达92.7%.Mg掺杂的改性样品LiNi0.4Mg0.1Mn1.5O4在0.1C倍率下循环30次后容量保持率达95.7%,Mg的掺杂可以提高该材料的循环性能.  相似文献   

5.
Li-Mn-Al-O锂离子正极材料的合成及其性能   总被引:1,自引:0,他引:1  
以Mn2O3,Al(NO3)3.9H2O和LiOH.H2O为原料,采用固相合成法制备掺铝锰酸锂材料。研究结果表明:掺铝样品是一种复相,物相组成为尖晶石LiMn2O4和单斜型Li2MnO3;掺铝后材料颗粒粒度变小,晶体形状为类球形;该材料性能介于层状LiMnO2和尖晶石LiMn2O4性能之间,当掺铝量为0.1时,最高容量可达197mA.h.g-1,循环20次后,容量还高于在190 mA.h.g-1;掺铝可提高材料的电导率,促进锂离子在电极中的迁移,提高材料电化学性能。  相似文献   

6.
采用溶胶-凝胶法合成了锂锰尖晶石正极材料LiMn2-2xCoxCrxO3.95F0.05(x=0.05、0.1),并用沉淀法在其表面包覆2%的TiO2.XRD和ESEM分析表明掺杂样品以及掺杂之后再包覆TiO2的样品依然保持尖晶石结构,样品颗粒大小分布都较均匀.电化学性能测试显示LiMn2O4的首次放电容量为124.4 mA.h/g,50次循环后容量损失43.2%,而多元掺杂样品LiMn1.9Co0.05Cr0.05O3.95F0.05和LiMn1.8Co0.1Cr0.1O3.95F0.05的初始放电容量分别为114.7和103.4 mA.h/g,100次循环后容量损失为9.7%和4.1%.LiMn1.9Co0.05Cr0.05O3.95F0.05包覆2%TiO2和LiMn1.8Co0.1Cr0.1O3.95F0.05包覆2%TiO2样品的初始放电容量为109.3和96.6 mA.h/g,100次循环后容量损失为5.0%和3.5%,经过改性后材料的循环性能得到改善.  相似文献   

7.
用微波—高分子网络法 ( m-p)合成掺杂 Li Lax Nd0 .0 0 6 - x Mn1 .994O4( x=0 .0 0 6,0 .0 0 4 ,0 .0 0 2 ,0 ) .XRD图显示用此法可制得晶型很好的样品 .充放电测试说明 Li Mn2 O4的特征容量为 1 2 0 m A/g,循环 2 0次后容量衰减率为 4 .7% .EIS和计时电量图说明掺 La的 Li Mn2 O4表层电阻小 ,而掺 Nd的 Li Mn2 O4的电导率高 .所以 ,将 La和 Nd以合适比例掺入 Li Mn2 O4中有可能提高材料的电导率和循环性能  相似文献   

8.
采用尿素辅助溶胶凝胶法合成了尖晶石型掺钴锰酸锂(L iMn2-xCoxO4,0≤x≤0.3)纳米颗粒.以L iMn2-xCoxO4电极为正极,活性炭(AC)电极为负极,在1 mol.L-1L i2SO4水系电解液中组装成模拟非对称超级电容器AC/L iMn2-xCoxO4,通过循环伏安和恒流充放电法研究其赝电容性能.电化学测试结果表明,随着钴掺杂量的增加,AC/L iMn2-xCoxO4电容器的比电容呈下降趋势,但循环性能得到改善;其中AC/L iMn1.9Co0.1O4电容器展现出较大的比电容和较好的循环性能.在L i2SO4水系电解液中,当工作电压为(0-1.4)V、电流密度为100 mA.g-1时,AC/L iMn1.9Co0.1O4电容器的初始比电容为42.6 F.g-1;经1 000次循环后比电容为40.8 F.g-1,比电容保持率为95.8%.  相似文献   

9.
以溶胶-凝胶法合成了阴阳离子复合掺杂尖晶石型锰酸锂正极材料LiCu0.05Mn1.95O3.9F0.1,XRD表征合成产物具有良好的尖晶石结构;SEM测试表明所合成产物的颗粒达到了亚微米级,且分布均匀,形貌较好.以该物质作为锂离子电池的正极材料组装成扣式电池,经充放电循环测试可知 LiCu0.05Mn1.95O3.9F0.1材料比LiMn2O4正极材料能够更好地抑制电池的可逆容量在充放电过程中的衰减,循环性能有了很大改善,表现出很好的电化学可逆特性.  相似文献   

10.
采用溶胶凝胶法合成了LiMn2O4及其表面Bi修饰材料, 通过聚丙烯酸(PAA)螯合的Bi(NO3)3溶液浸泡LiMn2O4以及煅烧合成了PAA-Bi/LiMn2O4材料. 采用TGA、XRD、SEM、循环伏安和充放电循环研究了3种锂离子电池正极材料的综合性能. 研究表明,Bi修饰的2种LiMn2O4材料电池的循环稳定性均提高. PAA浸泡-煅烧法的优点是避免了杂质Bi2Mn4O10的形成,PAA-Bi/LiMn2O4的首次放电容量损失较少,同时电池的循环稳定性大大提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号