首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
报道了5〔(对N缬氨酸丁氧基)苯基〕10,15,20三(对氯苯基)卟啉(H2L)及其金属配合物MLCl(M=Fe,Mn)的合成,并对其进行了元素分析、IR、UVCis及荧光光谱的结构表征.初步研究了在新的催化体系O2ZnHAcIm,MLCl对烯烃的催化环氧化.  相似文献   

2.
超延伸是使聚合物分子链高度取向的重要手段之一。结晶性柔性链高分子材料通过超延伸可以达到较高的力学特性。研究了超高分子量聚乙烯(UHMWPE)超延伸过程的结构变化。以及延伸条件对材料力学性能的影响规律。结果表明:UHMWPE在温度Td=150℃下超延伸时,其弹性模量(E)、断裂强度(a)随延伸比(a)的增加而增大;当a=60时,为最佳力学状态(E=130.44 GPa,a=3.86GPa),E和a值  相似文献   

3.
TS—1沸石合成过程中模板剂用量对钛进入骨架的影响   总被引:2,自引:1,他引:1  
以TPABr为模板剂、NH3.H2O为碱源,水热条件下合成了TS-1沸石,采用XRD、IR、UV-Vis、^29SiCPMASNMR、^27AlCMASNMR、^13CCPMASNMR等表征手段详细研究了模板剂不同用量对钛进入骨架的影响。  相似文献   

4.
对氯化聚乙烯(CPE)改性聚氯乙烯(PVC)体系的性能随组成的变化进行了研究。用电子显微镜(TEM.SEM)考察了共混体系的形态结构。结果发现:PVC与CPE相容性较好,共混体系在断裂过程中产生网丝结构。网丝结构与CPE用量密切相关。网丝结构是脆-韧转变后体系发生塑性变形的结果。是PVC基体韧性突增的主要原因。  相似文献   

5.
刚性无机粒子对PDMS/PU共混体系增强改性研究(Ⅰ)   总被引:1,自引:0,他引:1  
采用刚性无机粒子(SIO2)填充不相容聚二甲基硅氧烷/聚氨酯(PDMS/PU)共混体系.重点研究了SiO2表面处理剂种类、SiO2填充量对不同结构的PDMS/PU共混体系力学性能的影响关系.研究结果表明:SiO2经过适当偶联剂表面处理后,能显著地提高PDMS/PU(M)、PDMS/PU(P)共混物的力学性能,其抗张强度分别由3.4MPa、4.5MPa提高到12.3MPa和9.0MPa.  相似文献   

6.
采用刚性无机粒子(SiO2)填充不相容聚二甲基硅氧烷/聚氨酯(PDMS/PU)共混体系,重点研究了SiO2表面处理剂种类、SiO2填充量对不同结构的PDMS/PU共混体系力学性能的影响关系,研究结果表明:SiO2经过适当偶联剂表面处理后,能显著地提高PDMS/PU(M)、PDMS/PU(P)共混物的力学性能,其抗张强度分别由3.4MPa、4.5MPA提高到12.3MPa和9.0MPa。  相似文献   

7.
主要介绍了增容剂的种类、用量对非相容性PVC/SBR共混体系改性的研究,并讨论了硫化剂、促进剂用量,返炼次数对共混体物性,挤出性能的影响。试验结果表明:NBR-26是PVC/SBR的优良增容剂,可以显著改善共混物的力学性能。通过对硫化剂、促进剂的适当选择,共混物可获得良好的综合性能。  相似文献   

8.
热稳定剂对PVC/PU共混体系性能的影响   总被引:3,自引:0,他引:3  
本文研究了PVC的热稳定剂对PVC/PU共混体系性能的影响.通过红外光谱、热分析和透射电镜等手段探讨造成共混物性能差别的原因.结果表明:金属皂类稳定剂最有利于共混体系的韧性改善,而有机锡化合物、铅盐均不利于提高共混物的缺口冲击强度.不同的稳定剂对共混体系的应力-应变行为影响不大.溶剂抽提和红外光谱结果表明,加工过程中可能导致的化学交联不起显著的作用.动态力学的结果表明,不同的稳定剂体系导致PU与PVC的两相相容性有差别,从而导致共混体系相态结构的差异,透射电镜研究结果证实了这一点.  相似文献   

9.
THEOPTICALOBSERVATIONOFTHECOLLISTIONSOFCOMETSHOEMAKER-LEVY9WITHJUPITER¥ZhouHongnan(DepartmentofAstronomy,NanjingUniversity,21...  相似文献   

10.
ESTABLISHINGANORGANICCHEMISTRYMICROSCALELABORATORYPROGRAM¥ArthurR.Murdoch(MountUnionCollege,Alliance,Ohio,USA)(Visitingprofes...  相似文献   

11.
采用-缩二乙二醇改性甲基四氢邻苯二甲酸酐,在此基础上用改性酸酐增韧环氧树脂.用扫描电镜(SEM)、材料试验机、DMA等对固化产物的微观结构、力学性能和耐热性能进行了测试与表征.结果表明,当一缩二乙二醇与甲基四氢邻苯二甲酸酐的摩尔比为1:1.25时,制备的改性酸酐对环氧树脂具有明显的增韧效果.当改性酸酐的加入量为15%时,固化产物的增韧效果最佳,冲击断面呈现明显的韧窝状且力学性能和耐热性能基本保持不变.  相似文献   

12.
POE及其马来酸酐接枝物增韧PTT的性能研究   总被引:1,自引:0,他引:1  
通过熔融共混制备了POE及其马来酸酐接枝物增韧PTT共混物,研究了增韧PTT共混物的结晶性能、力学性能和形态。研究结果表明POE马来酸酐接枝物能更均匀分散在PTT中,且也能促进POE在PTT中的分散,从而使PTT共混物的力学强度提高。POE马来酸酐接枝物能促进PTT的结晶,但存在临界用量,在15%时促进结晶作用达到饱和。用POE马来酸酐接枝物单独或与POE混合增韧PTT可在保持一定的拉伸强度的同时大幅提高PTT的冲击强度。  相似文献   

13.
以尿素取代部分二元醇,通过熔融聚合法合成了一种环保可降解原子灰用不饱和聚酯酰胺树脂,并对其进行了表征。研究了尿素的不同用量对原子灰力学性能及树脂水解性能的影响。结果表明,适当的尿素用量代替部分二元醇所得原子灰树脂,其综合性能较好且水解性得到提高。  相似文献   

14.
以钛酸酯为偶联剂,PP为基体,通过熔融共混法制备了木粉/PP复合材料。研究了偶联剂含量变化对复合材料力学性能及流动性能的影响,采用扫描电镜(SEM)观察了复合体系的冲击断面形貌。结果表明:当偶联剂含量为2%时,35%木粉/PP复合材料体系的拉伸强度和弯曲强度达到最大值,SEM照片表明偶联剂的加入改善了木粉与PP基体的界面结合,但由于木粉团聚,导致复合材料缺口冲击强度下降。偶联剂的加入改善了木粉/PP复合材料的加工流动性。  相似文献   

15.
选用一种能够在水中分散良好的有机改性蒙脱土(OMMT),采用乳液共沉法制备了NBR/NR/OMMT纳米复合材料,透射电镜观察显示制得了纳米复合材料。研究了纳米复合材料的力学性能、老化性能和耐油性能。测试结果表明,当OMMT用量为8份时,300%定伸应力和拉伸强度分别为4.89MPa和9.59MPa,与NBR/NR并用胶相比分别提高了84.5%和134%。当OMMT含量为8份时,老化后的纳米复合材料力学性能和耐油性能最优。  相似文献   

16.
采用Brabender塑化仪和HAAKE转矩流变仪,通过熔融共混制备了LMWPVC/HMWPVC医用材料,研究了该材料的力学性能、光学性能和加工性能。结果表明,在LMWPVC中加入一定量的HMWPVC,能够使体系的弹性明显提高,透明性略有上升,但是加工性能明显下降,而且选择合适的加工温度,可以有效地提高体系的弹性。  相似文献   

17.
为了得到综合性能较好的三元乙丙橡胶(EPDM)、聚丙烯(PP)热塑性弹性体(TPE),对3种不同硫化体系动态硫化制备的EPDM/PP共混型TPE的性能进行研究.结果表明,采用酚醛树脂硫化体系制备的这类TPE具有较好的力学性能及加工性能,硫磺体系制备的这类TPE:具有较好的力学性能,但加工性能一般.过氧化物体系制备的这类TPE,力学性能和加工性能均较差.  相似文献   

18.
通过溶液共混制备了不同碳纳米管(CNTs)质量分数的CNTs/聚苯乙烯(PS)、CNTs/聚醚酯(PEE)复合材料,研究CNTs对复合材料导电性能、力学性能的影响.CNTs的加入可以使复合材料的导电性能得到明显提高,CNTs/PS体系的电导率大于CNTs/PEE体系的电导率.随着CNTs质量分数的增加,CNTs/PS复合材料的断裂强度先增大后减小,在CNTs质量分数为1%时达到最大值,但CNTs/PEE的断裂强度随CNTs质量分数的增加逐渐下降,扫描电镜(SEM)结果显示CNTs在PS中的分散性稍好于在PEE中的分散性.  相似文献   

19.
用水溶性烯类单体与丁腈橡胶直接共混制备吸水膨胀橡胶WSR(water-swelingrubber),并对WSR的亚微观形态、吸水膨胀特性、力学性能和浸水稳定性进行了研究。TEM研究证明,水溶性单体与橡胶共混可制得亲水组分在橡胶相中分散均匀的WSR;烯类单体的聚合反应活性越高,所制得的WSR的吸水膨胀率越高;其由丙烯酸钠与橡胶共混制得的WSR力学性能和耐久性与高吸水树脂/橡胶共混型WSR相似  相似文献   

20.
研究了通过酯交换反应制作相容剂及其加入量对PC/PBT共混体系力学性能的影响。探讨了不同的相容剂、PBT以及PE-MAH的含量对PC/PBT共混合金的力学性能的影响。结果表明:相容剂的加入,提高了PC/PBT共混体系两相问的相容性,改善了材料的力学性能,加入PE-MAH使材料冲击强度大幅提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号