首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
基于Fick扩散方程,建立了煤气储罐瞬间完全泄漏的无风情况下的动态扩散模型.根据气体储罐形状为圆柱,确定了介质瞬间完全泄漏后模型的初始条件和边界条件,然后通过坐标变换和傅立叶变换和适用于圆柱(Bessel)函数的Hankel变换,求出了此条件下扩散方程的解析解.根据风力对扩散过程的影响,在无风扩散方程的基础上建立了有风条件下的扩散模型并求取了解析解,然后以一50000m3(r=19m,h=40m)煤气储罐完全破裂后的气体扩散过程为例进行了模拟,模拟结果验证了模型的有效性.  相似文献   

2.
液体储罐泄漏过程中,影响后果的因素包括环境温度、泄漏孔面积和初始灌压.采用敏感性分析法,在参数值允许的范围内,对泄漏速度的影响从大到小的排列顺序为泄漏孔的面积、环境温度和初始灌压,  相似文献   

3.
10 000 m3的立式内浮顶储罐在成品油站场中数量最多,为研究汽油泄漏扩散行为,考虑相邻罐之间的影响,通过FLACS软件,按照标准建立罐区三维模型,基于pool模块,分别讨论液池和可燃气云在不同泄漏速率、温度、风速影响下的扩散行为。研究结果表明,双罐区的液池和气云扩散主要受相邻储罐的阻挡而绕流扩散,随后与单罐区一样,受到防火堤的约束;根据在30 s形成的液池面积大小及可燃气体扩散最远距离来评价汽油泄漏后的灾害严重程度,发现泄漏速率越大、风速较小且稳定时,液池及可燃气云扩散速度越快,危险程度越高,而温度对液池扩展及气云扩散影响较小;结合监测点的实时气体浓度信息及GB 50493——2019相关规定,建议罐区可燃气体探测器设置在泄漏源附近,高度设置为0.3 m。  相似文献   

4.
液化天然气船舶海上泄漏危害性与风险分析   总被引:5,自引:0,他引:5  
系统地分析了液化天然气船舶泄漏的危险源、泄漏后可能造成的危害,总结了对危害结果造成影响的决定性因素.对开展液化天然气船舶海上运输安全性研究,建立严格有效的液化天然气船舶液货泄漏的预报评估体系与整个液化天然气运输链的正常运行都具有重要的意义.  相似文献   

5.
液化天然气泄漏扩散数学模型分析   总被引:1,自引:0,他引:1  
液化天然气(LNG)的泄漏扩散已成为安全领域的一个重要研究内容,以LNG蒸气云扩散数学模型的开发进展为对象,详细分析了用于该类型扩散的经验模型、积分模型、浅层模型、拉格朗日非线性烟团模型、计算流体力学(CFD)模型。研究指出:尽管基于Navier-Stokes(N-S)方程的模型在所有模型中性能最好,但用于预测LNG泄漏扩散时,仍有许多值得改进的地方,如要考虑科里奥利力和气象因素等的影响。最后,重点针对当基于N-S方程的CFD模型用于LNG扩散时需要改进的地方进行了展望。  相似文献   

6.
针对液化天然气水面泄漏蒸发产生的低温天然气扩散问题,基于Monin-Obukhov相似理论,使用FLUENT软件,模拟Coyote系列实验3、5.计算结果与实验结果、SLAB和DE-GADIS模型模拟结果比较表明,使用FLUENT软件模拟结果更接近实验数值.同时,通过设定FLUENT软件中壁面的热传导速率和液化天然气的蒸发速率,模拟液化天然气在水面和地面泄漏和扩散过程,结果表明,液化天然气水面泄漏扩散时水面最大体积分数高于地面泄漏扩散情况.  相似文献   

7.
贾彦强  邢晓龙  蒋波沱  张旭 《科技信息》2013,(7):206-206,247
天然气已经成为人民日常生活中不可或缺的组成部分,但天然气管道泄漏扩散却严重威胁了人民的生命财产安全,因此对于天然气管道泄漏扩散的研究就显得尤为重要。本文就国内关于天然气管道泄漏扩散方面的研究进展进行了综述。  相似文献   

8.
液化天然气泄漏扩散数值模型分析   总被引:1,自引:0,他引:1  
简述了常用的LNG泄漏扩散模型,分析了这些模型的优缺点及适用性,重点介绍了液化天然气泄漏扩散CFD模型公式,分析了应用大型LNG泄漏现场试验对LNG泄漏扩散CFD模型的验证数据.分析结果表明:同其他的模型相比,液化天然气泄漏扩散CFD数值模型具有更好的预测精度.  相似文献   

9.
厂区天然气泄漏扩散的数值模拟研究   总被引:1,自引:0,他引:1  
根据危险性气体空间泄漏扩散的特点,对厂区天然气等危险性轻质气体泄漏扩散运动进行了数值模拟,着重研究了大气风向风速、泄漏射流方向和泄漏时间对危险性轻质气体(天然气)空间泄漏扩散浓度场和危险性区域的影响.其中大气主导风的风速对气体扩散浓度和扩散危险性区域有很大的影响,如等值线图模拟的条件下,在x方向上,风速v=0.5 m.s-1比v=5.0 m.s-1条件下危险性区域大155 m.  相似文献   

10.
以CO2为对象,对室内空间重气扩散过程进行实验研究,考察泄漏源强度、泄漏源高度和开窗对室内CO2扩散过程的影响。结果表明:CO2在室内空间泄漏扩散后有明显的沉降和分层现象。CO2浓度和浓度上升速率随着高度的增加而减小。随着泄漏源强度的增加,近地面处CO2浓度和浓度上升速率均增加,远离地面处CO2浓度值略有上升。随着泄漏源高度的增加,近地面处CO2浓度和浓度上升速率均减小,远离地面处CO2浓度增加。当泄漏源高度较高时,虽然近地面处的CO2浓度相对有所减小,但整个空间都会有较高CO2的气体分布,危险性更大。室外静风条件下,在高位开窗时,空间内CO2浓度没有明显的降低;但在低位开窗时,近地面处CO2浓度明显降低,但远离地面处,CO2浓度降低幅度较小。  相似文献   

11.
天然气管道发生泄漏会造成一定的危险性,很有可能造成爆炸等危害性极大的事故。通过对泄漏气体危险边界的研究,可以确定天然气泄漏扩散形成的危险区域。本文通过利用Fluent模拟软件对泄漏时间、泄漏孔径和障碍物三种情况进行模拟分析,分析不同工况情况对天然气泄漏扩散的影响,为处理泄漏事故提供理论依据。  相似文献   

12.
针对天然气管道站场中天然气的泄漏扩散对安全生产造成的问题,开展了天然气管道站场中天然气泄漏扩散规律研究。采用专业软件模拟的方法,使用FLACS进行模拟,设置边界条件进行求解,研究不同风速、不同风向及不同泄漏速率对天然气泄漏扩散的影响,并结合天然气行业相关标准对天然气管道站场内可燃性气体位置进行优化。研究结果表明,泄漏速率越大、风速越小时,站场区域内可燃气体体积越大,可燃气体扩散范围越广,危险程度越高,同时,顺风向泄漏的危害程度要小于其他方向。基于计算结果建议收发球筒区的可燃气体探测器应设置在距离收球筒1 m处,高度设置为2m。这一研究为天然气管道站场的安全运行提供了重要理论支撑。  相似文献   

13.
当今城镇建筑布局集中且楼房高度超高,因第三方施工破坏等造成的城镇天然气管道泄漏事故频发,在建筑区可能造成严重的事故危害,所以模拟天然气泄漏后在建筑群间的扩散行为是很有必要的。本文基于城镇布局形式多样的特点,利用Fluent软件对4种不同建筑布局下的天然气管道泄漏扩散进行模拟,探究了不同建筑布局下的天然气扩散特性、总结危险区域。模拟结果表明围合式布局是4种布局形式中最危险布局;建筑群范围内,距离泄漏源近端天然气扩散自下而上发展,距离泄漏源远端天然气受涡旋作用影响自上而下沉降聚集;建筑物对天然气扩散的阻挡作用导致天然气在迎风侧建筑壁面聚积,天然气危险区域出现在建筑体外壁及建筑物顶部位置。该研究对于指导天然气事故预防和减小事故危害有十分重要的意义。  相似文献   

14.
化学危险性气体泄漏扩散模拟及其影响因素   总被引:7,自引:0,他引:7  
分析了描述易燃易爆及有毒有害气体泄漏扩散过程的数学模型,包括Gaussian模型、Gaussian轨迹烟云模型、BM模型、Sutton模型及FEM3模型。重点介绍了目前广泛使用的Gaussian模型及Gaussian轨迹烟云模型。针对事故泄漏扩散过程的复杂性,详细讨论了气象条件及地形条件对危险性物质泄漏扩散过程的影响,此外还对不确定参数的选取进行了探讨。  相似文献   

15.
高含硫天然气集输管道泄漏扩散数值模拟   总被引:12,自引:2,他引:10  
利用CFD软件FLUENT对高含硫天然气集输管道破裂泄漏后的甲烷、硫化氢的扩散进行了数值模拟.结果表明,受重气扩散时沉积效应的影响,高含硫天然气泄漏扩散时近地面的横向污染范围比普通天然气更大,烟云高度明显降低.在自然风速影响下,随海拔高度的增加,危险气体向下风向偏移明显.压力为3.5 MPa、含硫化氢5%的高压天然气管道断裂泄漏2 min后,在环境风速影响下爆炸危险范围为下风向150~290 m,中毒范围为下风向0~270 m.山顶地形条件下的扩散规律与平地类似,山谷地形条件下硫化氢将发生沉积而不利于扩散.  相似文献   

16.
将氢气混入天然气管网是目前世界上实现氢气大规模输送的最有效方式。氢气爆炸极限为4.0%~75.6%,上下限范围宽,且分子直径比甲烷小,极易泄漏,给输气站场带来很大隐患。针对多组分物系混氢天然气的泄漏,基于修正的二元扩散系数及热力学因子计算方法,计算了混氢天然气三物系Fick扩散系数矩阵,用来描述混氢天然气中各组分分子间相互运动的传质过程,以FLUENT为平台进行了CFD数值模拟分析,研究发现,混氢天然气泄漏后其扩散受到障碍物及风速等因素的影响;同体积混氢天然气与不含氢天然气泄漏,混氢天然气爆炸下限扩散半径更小;较低含氢量的混氢天然气泄漏后氢气组分爆炸区域仅限于泄漏点附近。研究结果可为站场内发生混氢天然气泄漏扩散提供预警和防护指导。  相似文献   

17.
高含硫天然气集输管道泄漏扩散数值模拟   总被引:3,自引:0,他引:3  
利用CFD软件FLUENT对高含硫天然气集输管道破裂泄漏后的甲烷、硫化氢的扩散进行了数值模拟.结果表明,受重气扩散时沉积效应的影响,高含硫天然气泄漏扩散时近地面的横向污染范围比普通天然气更大,烟云高度明显降低.在自然风速影响下,随海拔高度的增加,危险气体向下风向偏移明显.压力为3.5 MPa、含硫化氢5%的高压天然气管道断裂泄漏2 min后,在环境风速影响下爆炸危险范围为下风向150~290 m,中毒范围为下风向0~270 m.山顶地形条件下的扩散规律与平地类似,山谷地形条件下硫化氢将发生沉积而不利于扩散.  相似文献   

18.
随着燃气管道数量和规模的增加,由于燃气泄漏至相邻地下空间导致燃气爆炸的事故日益突出。为了研究天然气管道泄漏后气体在土壤和地下空间耦合下的扩散过程及规律,本文采用COMSOL软件中建立燃气管道泄漏在土壤和阀门井中扩散的数学模型,分别研究不同管道压力、土壤孔隙率、泄漏口到阀门井水平距离对燃气泄漏扩散的影响,结果表明:随着管道压力和土壤孔隙率的增加,阀门井内甲烷摩尔分数到达爆炸下限的时间相应减小;不同孔隙率条件下阀门井内甲烷摩尔分数差值逐渐稳定在一个定值;泄漏位置距离地下空间小于12.5 m时,阀门井内甲烷摩尔分数到达爆炸下限的时间小于7天,距离大于12.5 m时阀门井内甲烷摩尔分数到达爆炸下限需要一周以上的时间。  相似文献   

19.
20.
论天然气泄漏的原因及预防措施   总被引:1,自引:0,他引:1  
分析天然气泄漏的原因,介绍预防措施  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号