首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
液态CO2具有惰化降氧、汽化降温、抑爆及扩散范围大等特点,能够有效解决采空区火源位置模糊、灭火危险大等难题。液态CO2在管道输送过程中易形成干冰或流速过快极易发生堵塞、爆震现象,制约了在采空区自燃火灾防治中的应用。在分析采空区煤自然发火特点及CO2物性基础上,确定了液态CO2通过管路直接输送到采空区的防灭火工艺流程。通过建立CO2气-液两相管道输送热力学模型,利用Aspen HYSYS V7.3软件模拟计算CO2在管道输送参数变化及影响因素,得出的管道输送距离与温度、压力、流量、内径等相互之间的关系。通过模拟确定了CO2气-液两相管道安全输送参数及现场应用工艺。在压力为2 200 k Pa,温度为-28℃,摩尔流量为75 kmole/h的条件下,管道输送内径为25.4 mm时,对应的安全输送距离不大于500 m;在内径为101.6 mm时,管道输送的安全距离不大于50 000 m.结果表明,模拟得出的输送工艺参数能够满足液态CO2防灭火系统管路直接输送过程的安全。  相似文献   

2.
 为有效消除矿井火灾隐患, 保障井下作业人员安全, 避免煤炭资源的损失扩大, 研制了液态二氧化碳CO2(l)的储罐、地面汽化防灭火系统和井下直接防灭火系统.储罐的自增压系统可使CO2在其内保持液态状态而不结冰;CO2(l)的地面汽化灭火系统可以将CO2(l)在地面运用电热汽化器和空温汽化器汽化, 气态的CO2在稳压罐内稳压达到1.5MPa后, 以0.5MPa的压力通过管道输送至火区进行防灭火;CO2(l)防灭火列车可以直接将其运到煤矿井下的高温地点或火区附近, 快速降温、灭火.照金煤矿122综采工作面防火工程实践表明, CO2(l)可以快速有效降低火区环境的温度、氧气和煤自燃指标气体浓度, 消除火灾隐患.  相似文献   

3.
矿井地面固定式液态CO2防灭火工艺流程模拟   总被引:1,自引:0,他引:1  
根据采空区煤自然发火的实际情况,在分析CO2相态的基础上,为了防止液态CO2在长距离输送过程产生干冰堵管,确定了液态CO2汽化输送的防灭火工艺流程,建立了液态CO2汽化管道输送的热力学模型.利用Aspen HYSYS V7.3软件模拟了液态CO2汽化管道输送过程及影响因素,通过对液态CO2汽化管道输送过程模拟与分析,得出了液态CO2汽化时摩尔流量与加热量、有效输送管长、管道出口温度等之间的关系,确定了加热器功率与管道入口温度、压力和管道出口温度、压力及管道长度之间的关系;根据不同矿井的实际情况,确定合理的加热功率,提高防灭火的效率,优化液态CO2防灭火系统的工艺技术参数,确保系统能够安全稳定地运行,研究成果对促进CO2防治煤层自燃技术体系的完善具有重要的意义.  相似文献   

4.
阐述了固定床加压热天平(PBBR)系统的工作原理和指标,讨论了影响天平稳定的因素,并就该系统的可靠性进行了验证和分析,说明了该系统优于吊蓝式加压热天平系统。在PBBR系统上,测定了沈北褐煤在1173.15K时制成的煤焦在101.3~3039kPa和1073.15~1273.15K下与H_2,CO_2反应的动力学。结果表明:CO_2和H_2与煤焦的反应都是一级的;CO_2与煤焦的反应活性大于H_2与煤焦的反应活性;研究了温度,压力对CO_2、H_2与煤焦气化反应的碳转化率的影响,计算了CO_2和H_2气化反应的表观活化能和反应活化能,并对CO_2和H_2气化反应机理模型进行探讨。  相似文献   

5.
将3种不同变质程度煤于1173K下制成煤焦,在PBBR装置上于1073~1223K温度和0.29~2.47MPa下进行煤焦Boudouard反应试验。提高反应温度和压力均能使煤焦的基碳转化率和平均比气化速率增大,且显示温度的影响大于压力。随着原煤变质程度加深,其煤焦的气化活性减小。未反应芯表面反应模型能较好描述此气化过程,并可计算出反应动力学参数。活化能,频率因子和反应级数。用Na_2CO_3和K_2CO_3作催化剂能明显加速官地煤焦与CO_2气化反应速率,并显著降低其反应活化能,且K_2CO_3的催化效果大于Na_2CO_3。  相似文献   

6.
本文针对中煤平朔井工一矿19106工作面采空区火灾特点,采用以灌注大流量三相泡沫为主结合注水、灌注凝胶、风流调整、端头封堵等的综合防灭火技术对火区进行综合治理,使采空区火灾内CO气体浓度减低至安全标准以下,有效地扑灭了19106工作面采空区火灾,保证了19106工作面安全生产。研究结果可为煤矿采空区防灭火提供指导。  相似文献   

7.
煤气化工艺作为煤制天然气的重要环节,是实现煤炭资源清洁利用的关键。基于化工流程模拟软件Aspen Plus建立BGL(British Gas Lurgi)炉煤气化工艺,以合成气有效成分、制气效率及水蒸气分解率为评价指标,考察常规气化技术中气化剂操作参数对工艺的耦合作用,得出最优气化剂组成及预热温度;同时,为解决煤气化过程中CO_2排放量大及氢碳比较低的问题,分别引入CO_2、CH_4对气化剂进行改进,进一步优化气化剂组成。结果表明:在常规气化技术中,m_(O_2)/m_(Coal)=0.33、m_(H_2O)/m_(Coal)=0.14为最优气化剂组成,220℃为最优气化剂预热温度;在改进气化技术中,m_(CO_2)/m_(H_2O)=0.18,m_(CH_4)/m_(H_2O)=0.08为最优气化剂组成。  相似文献   

8.
考虑井筒轴向传热以及井壁围岩的温度变化对流场的影响,建立CO_2井筒循环流动模型,实现对流场压力参数、温度参数与CO_2物性参数的耦合计算与分析。结果表明:实验条件下连续管内CO_2由液态转变为超临界态的临界井深为780 m,环空中CO_2可始终处于超临界态;环空中压力剖面与井深近似呈线性相关,CO_2的压降比水的小36.7%;连续管内物性参数的变化主要由温度的变化决定,环空中则取决于压力的变化;环空中雷诺数高达106,处于较强的紊流状态;超临界CO_2钻井在窄密度窗口储层应用中具有优势。  相似文献   

9.
用装有气相色谱在线分析的高温高压差热分析装置在773~1273K的温度范围内考察了氧化钙对平朔烟煤三种基本有机显微组分(镜质组、稳定组和丝质组)分别与CO_2和水蒸气进行气化反应的影响。CO_2的反应压力和水蒸气的反应分压分别为1.0MPa和10KPa,升温速率均为10K/min.反应性测定和气化动力学数据处理结果发现,CaO对显微组分的气化有催化作用,而且这种作用在CO_2气化中更明显;显微组分的类型和气化反应气氛决定CaO的最佳添加量。对试样气化后残渣的电子探针能谱测定表明,CaO在显微组分的气化过程中具有固硫能力,这种能力从强到弱的顺序为稳定组、镜质组和丝质组,而且在水蒸气气化中的固硫作用更显著。扫描电镜对残渣的观察表明,CaO对显微组分在气化中的灰团聚具有阻抑作用,其机理与对显微组分气化的催化作用机理相似。用于煤/煤焦加压气化的动力学模型可以用来描述显微组分的气化和催化气化过程。  相似文献   

10.
采煤工作面采空区依据漏风状况划分为冷却带、自燃发火带和窒息带,对其现场测定可以确定工作面采空区自燃发火的范围。在该范围内注氮防灭火,必须保证注氮纯度和注氮量,提高注氮连续性和检测技术的可靠性,同时采取必要的减少采空区漏风的措施是注氮防灭火成功与否的关键。  相似文献   

11.
该文主要论述了在物理发泡射频同轴电缆的生产过程中,CO_2发泡和N_2发泡相比具有提高物理发泡射频同轴电缆绝缘的发泡度,从而降低成本,提高衰减性能的优点,阐述了CO_2注气系统的原理及在生产过程中为避免液态的CO_2汽化形成"干冰"堵塞气管而采取的措施,还论述了CO_2注气压力和流量的计算方法,为生产过程中CO_2流量和压力的稳定控制提供了理论依据,并结合实例进行了进一步分析。  相似文献   

12.
一、食品冻干的理论基础 人类在很久以前就认识了水(H2O)有三种相态:固态的冰,液态的水,气态的蒸汽。这3种相态常用“三相图”来表示:在温度一气压(蒸汽压力)平面中,冰、水、汽各占一个区域,这3个区域由曲线OA、OB和OC分开。在OA线上冰与水共存,在OB线上水与汽共存,在OC线上冰与汽共存。在3线相交的O点上,冰、水、汽共存,此点称为“三相点”。纯水(H2O)在三相点的温度为0.01℃,气压为610.5Pa.  相似文献   

13.
基于流场模拟的综放面自燃危险区域划分及预测   总被引:13,自引:0,他引:13  
通过对采空区渗流场的数值模拟,得到采空区渗流速度及氧气体积分数的分布.结合实验测得的煤自燃发火期和自燃临界参数,对采空区"三带"进行划分,并得到了采空区不自燃的工作面最小推进度.该方法计算量比模拟采空区煤自燃全过程少得多,预测精度却能够满足实际防灭火需要.  相似文献   

14.
为研究超临界CO_2置换CH_4过程中温度对置换效果的影响,以屯留煤样为研究对象,借助ISO-300型等温吸附仪对煤样进行了不同温度(35、45、55℃)、相同注入压力(12.7 MPa)条件下的CO_2置换解吸CH_4试验。研究结果表明:置换解吸过程中,超临界CO_2吸附相体积分数随着温度升高而增加,随压力降低而增大,CH_4吸附相体积分数呈相反变化趋势;超临界状态下,试验直接测得的气体吸附量为Gibbs吸附量,气体真实吸附量与压力之间符合Langmuir吸附曲线,且与Gibbs吸附量的差值随压力的升高而增大;试验压降范围内,温度为35℃条件时,CH_4气体单位压降解吸率最高,显示出温度接近临界温度时,超临界CO_2置换效果最佳。  相似文献   

15.
压裂过程中CO_2压裂液的相态和流变特性复杂多变,CO_2压裂液的高压流变性是压裂设计的基础。制备一种硅氧烷类增稠剂,测试其增稠性能,并通过改变增稠剂质量分数、温度、压力研究增稠后的CO_2压裂液在毛细管内流动的流变特性。结果表明:8~16 MPa条件下,硅氧烷增稠CO_2压裂液表现为典型的幂律流体特性;温度和压力对硅氧烷增稠的CO_2流变性影响显著,随着温度升高,硅氧烷增稠CO_2的表观黏度降低,稠度系数与流变指数均减小,在30~40℃,CO_2由液态变为超临界状态,增稠CO_2的表观黏度大幅度下降;随着压力升高,硅氧烷增稠CO_2表观黏度升高,稠度系数增大,流变指数减小,CO_2压裂液的非牛顿性增强,压力由8 MPa升高至16 MPa,硅氧烷增稠CO_2的表观黏度增大62%。  相似文献   

16.
为了掌握甘蔗渣黑液焦CO_2气化特性和动力学数据,开展甘蔗渣黑液焦CO_2气化研究。通过改变温度、[CO]和[CO_2]研究其对黑液焦转化的影响。采用试验数据与兰格缪尔-修斯伍德吸附动力学方程拟合的方法求解动力学方程参数。研究表明,在升高气化温度和增加[CO_2]时可以加速气化反应,而在增加[CO]时则会抑制气化反应的发生;表观气化速率的倒数分别与[CO]和[CO_2]~(-1)成线性关系,但与[CO]/[CO_2]的比值不成线性关系;在研究的操作条件范围内甘蔗渣黑液焦CO_2气化过程可以采用兰格缪尔-修斯伍德吸附非催化动力学方程描述,平均活化能为153.5 k J/mol。研究数据表明活性点位数可作为M/C摩尔比值的函数而不是常数。引入M/C摩尔比值对动力学模型修正后,获得的气化反应常数、CO吸附常数和CO_2吸附常数均可视为恒定值,其值分别为0.158 9 m~3/(mol·min)、-1.048 7 m~3/mol和-0.323 8 m~3/mol。  相似文献   

17.
压缩式制冷装置通常利用液体汽化吸热来获得冷量,由于CO2在三相点-56℃以下时产生固体,故不能用它作为制冷剂来获得-56℃以下的低温环境.提出一种利用CO2蒸气固体颗粒作为制冷剂的制冷系统,可以以CO2为工质获得三相点以下的温度.在该系统中,采用可调喷嘴、升华器、高、低压流量调节阀代替原系统中的蒸发器,并对该系统进行了理论循环分析.结果表明,理想情况下该系统COP比现有的制冷系统高约50%.  相似文献   

18.
针对低渗透性煤层瓦斯难以抽采的问题,结合液态CO_2低温、低黏、渗流阻力小、相变增压等特性,提出低渗透性煤层注液态CO_2置换驱替CH_4技术。在韩城矿区桑树坪二号井开展煤层注液态CO_2置换驱替CH_4工业性试验,开发了压注工艺系统,确定了压注关键性参数,判定了CO_2置换驱替CH_4技术效果。试验结果表明:液态CO_2压注时压力呈现波动特性,起始升压速率较快,达到2.5MPa左右时趋于稳定;压注管路瞬时流量为0.6~1.4m~3/h,累计压注液态CO_2为6.0m~3;以压注过程中检验孔内CO_2体积分数为指标,判定试验有效影响半径达到18m。试验区域瓦斯抽采体积分数是原始体积分数的2.5倍,抽采纯量是原始纯量的3.5倍,相比瓦斯抽采效率提高。  相似文献   

19.
为了提高燃煤发电效率,基于已运行的燃煤机组,提出一种煤基CO_2-H_2O双循环联合发电系统,开展了双循环联合发电系统的概念设计并构建了双循环联合发电系统的仿真模型。首先对煤基超临界CO_2布雷顿再压缩循环、CO_2-H_2O双循环背压式以及双循环凝汽式方案进行热力仿真计算和分析论证,优选出最优双循环组合方案;然后对双循环系统(凝汽式)进行敏感性分析,研究了冷凝器出口温度和排气压力对双循环系统的总循环效率的影响;最后结合冷凝器出口温度的变化探讨了双循环(凝汽式)联合发电系统的运行模式。结果表明:CO_2-H_2O双循环系统(凝汽式)方案热经济性最优;随着冷凝器出口温度的升高,双循环系统的效率逐渐下降,并且随着排气压力的降低,循环效率受冷凝器出口温度的影响越明显;当冷凝器出口温度低于排气压力对应的饱和温度时,双循环系统应开启下位循环,联合机组以双循环系统模式运行,反之则关闭下位循环,联合机组以凝汽式机组模式运行。  相似文献   

20.
综放面采空区流场模拟及自燃危险区域划分   总被引:2,自引:0,他引:2  
综放采空区容易发生自燃。以往对采空区“三带”的划分主要通过向采空区埋管观测来实现,对于现场观测不能实现的情况下,采空区自燃危险区域难以判定。笔者通过对采空区渗流场的数值模拟,得到采空区渗流速度及O2浓度的分布。结合实验测得的煤自然发火期和自燃临界参数,对采空区“三带”进行划分。该方法计算量比模拟采空区煤自燃全过程少得多,但划分精度却能够满足实际防灭火需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号