首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.  相似文献   

2.
Mapping photonic entanglement into and out of a quantum memory   总被引:2,自引:0,他引:2  
Choi KS  Deng H  Laurat J  Kimble HJ 《Nature》2008,452(7183):67-71
Developments in quantum information science rely critically on entanglement-a fundamental aspect of quantum mechanics that causes parts of a composite system to show correlations stronger than can be explained classically. In particular, scalable quantum networks require the capability to create, store and distribute entanglement among distant matter nodes by means of photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon-counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated through probabilistic protocols. But an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading to intrinsically low count rates for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17%. Together with improvements in single-photon sources, our protocol will allow 'on-demand' entanglement of atomic ensembles, a powerful resource for quantum information science.  相似文献   

3.
The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information, and the construction of quantum repeaters and quantum networks. Much effort has been devoted to the development of such quantum memories, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon-photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol, and increase the spectral acceptance from the current maximum of 100?megahertz to 5?gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.  相似文献   

4.
Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels, including the entanglement between light and atoms and the observation of entanglement signatures between remotely located atomic ensembles. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities, and trapped atoms have been linked to emitted photons in free space. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum information applications.  相似文献   

5.
光子源和纠缠光子对的制备是量子信息产生和传输过程的源头,是实现量子通信的重要前提条件.半导体量子点固体系统具有可集成性和可扩展性的优点,并且与现有的半导体光电子学技术密切相关,近年来在单光子源和纠缠光子对制备方面取得了重要的进展,是未来全固态量子通信的重要元器件.从量子通信的基本原理出发,阐述了制备单光子源和纠缠光子对的重要性,介绍如何解析推导出圆形常规半导体量子点中的电子结构,描述了圆形拓扑绝缘体量子点中边缘态具有双重简并的电子结构,能级间隔与量子点的具体形状无关,并且具有自旋轨道锁定的特性,总结了实验和理论上在利用这一独特的电子结构制备单光子源和纠缠光子对方面取得的重要进展.  相似文献   

6.
Zhao Z  Chen YA  Zhang AN  Yang T  Briegel HJ  Pan JW 《Nature》2004,430(6995):54-58
Quantum-mechanical entanglement of three or four particles has been achieved experimentally, and has been used to demonstrate the extreme contradiction between quantum mechanics and local realism. However, the realization of five-particle entanglement remains an experimental challenge. The ability to manipulate the entanglement of five or more particles is required for universal quantum error correction. Another key process in distributed quantum information processing, similar to encoding and decoding, is a teleportation protocol that we term 'open-destination' teleportation. An unknown quantum state of a single particle is teleported onto a superposition of N particles; at a later stage, this teleported state can be read out (for further applications) at any of the N particles, by a projection measurement on the remaining particles. Here we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation (for N = 3). In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single-photon state. Our experimental methods can be used for investigations of measurement-based quantum computation and multi-party quantum communication.  相似文献   

7.
The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons to strongly interacting atomic Rydberg states in a cold, dense atomic gas. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching, all-optical deterministic quantum logic and the realization of strongly correlated many-body states of light.  相似文献   

8.
Experimental demonstration of a BDCZ quantum repeater node   总被引:1,自引:0,他引:1  
Yuan ZS  Chen YA  Zhao B  Chen S  Schmiedmayer J  Pan JW 《Nature》2008,454(7208):1098-1101
Quantum communication is a method that offers efficient and secure ways for the exchange of information in a network. Large-scale quantum communication (of the order of 100 km) has been achieved; however, serious problems occur beyond this distance scale, mainly due to inevitable photon loss in the transmission channel. Quantum communication eventually fails when the probability of a dark count in the photon detectors becomes comparable to the probability that a photon is correctly detected. To overcome this problem, Briegel, Dür, Cirac and Zoller (BDCZ) introduced the concept of quantum repeaters, combining entanglement swapping and quantum memory to efficiently extend the achievable distances. Although entanglement swapping has been experimentally demonstrated, the implementation of BDCZ quantum repeaters has proved challenging owing to the difficulty of integrating a quantum memory. Here we realize entanglement swapping with storage and retrieval of light, a building block of the BDCZ quantum repeater. We follow a scheme that incorporates the strategy of BDCZ with atomic quantum memories. Two atomic ensembles, each originally entangled with a single emitted photon, are projected into an entangled state by performing a joint Bell state measurement on the two single photons after they have passed through a 300-m fibre-based communication channel. The entanglement is stored in the atomic ensembles and later verified by converting the atomic excitations into photons. Our method is intrinsically phase insensitive and establishes the essential element needed to realize quantum repeaters with stationary atomic qubits as quantum memories and flying photonic qubits as quantum messengers.  相似文献   

9.
Deterministic quantum teleportation of atomic qubits   总被引:2,自引:0,他引:2  
Quantum teleportation provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication and quantum computation. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables, and with liquid-state nuclear magnetic resonance. Here we report unconditional teleportation of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system.  相似文献   

10.
"光子胚胎学"的理论体系   总被引:1,自引:1,他引:0  
提出了“光子胚胎学”的学科概念,阐述了“光子胚胎学”的理论体系和研究方法.指出了“光子胚胎学”对推动原子物理学、量子光学、理论量子力学和量子信息科学与技术等重要学科理论和实践的重要意义.  相似文献   

11.
J Yin  JG Ren  H Lu  Y Cao  HL Yong  YP Wu  C Liu  SK Liao  F Zhou  Y Jiang  XD Cai  P Xu  GS Pan  JJ Jia  YM Huang  H Yin  JY Wang  YA Chen  CZ Peng  JW Pan 《Nature》2012,488(7410):185-188
Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600?metres (ref. 14) and 13?kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16?kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4?±?0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8?kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high-frequency and high-accuracy acquiring, pointing and tracking technique developed in our experiment can be directly used for future satellite-based quantum communication and large-scale tests of quantum foundations.  相似文献   

12.
Yamamoto T  Koashi M  Ozdemir SK  Imoto N 《Nature》2003,421(6921):343-346
Entanglement is considered to be one of the most important resources in quantum information processing schemes, including teleportation, dense coding and entanglement-based quantum key distribution. Because entanglement cannot be generated by classical communication between distant parties, distribution of entangled particles between them is necessary. During the distribution process, entanglement between the particles is degraded by the decoherence and dissipation processes that result from unavoidable coupling with the environment. Entanglement distillation and concentration schemes are therefore needed to extract pairs with a higher degree of entanglement from these less-entangled pairs; this is accomplished using local operations and classical communication. Here we report an experimental demonstration of extraction of a polarization-entangled photon pair from two decohered photon pairs. Two polarization-entangled photon pairs are generated by spontaneous parametric down-conversion and then distributed through a channel that induces identical phase fluctuations to both pairs; this ensures that no entanglement is available as long as each pair is manipulated individually. Then, through collective local operations and classical communication we extract from the two decohered pairs a photon pair that is observed to be polarization-entangled.  相似文献   

13.
Blinov BB  Moehring DL  Duan L  Monroe C 《Nature》2004,428(6979):153-157
An outstanding goal in quantum information science is the faithful mapping of quantum information between a stable quantum memory and a reliable quantum communication channel. This would allow, for example, quantum communication over remote distances, quantum teleportation of matter and distributed quantum computing over a 'quantum internet'. Because quantum states cannot in general be copied, quantum information can only be distributed in these and other applications by entangling the quantum memory with the communication channel. Here we report quantum entanglement between an ideal quantum memory--represented by a single trapped 111Cd+ ion--and an ideal quantum communication channel, provided by a single photon that is emitted spontaneously from the ion. Appropriate coincidence measurements between the quantum states of the photon polarization and the trapped ion memory are used to verify their entanglement directly. Our direct observation of entanglement between stationary and 'flying' qubits is accomplished without using cavity quantum electrodynamic techniques or prepared non-classical light sources. We envision that this source of entanglement may be used for a variety of quantum communication protocols and for seeding large-scale entangled states of trapped ion qubits for scalable quantum computing.  相似文献   

14.
Entanglement is the fundamental characteristic of quantum physics-much experimental effort is devoted to harnessing it between various physical systems. In particular, entanglement between light and material systems is interesting owing to their anticipated respective roles as 'flying' and stationary qubits in quantum information technologies (such as quantum repeaters and quantum networks). Here we report the demonstration of entanglement between a photon at a telecommunication wavelength (1,338?nm) and a single collective atomic excitation stored in a crystal. One photon from an energy-time entangled pair is mapped onto the crystal and then released into a well-defined spatial mode after a predetermined storage time. The other (telecommunication wavelength) photon is sent directly through a 50-metre fibre link to an analyser. Successful storage of entanglement in the crystal is proved by a violation of the Clauser-Horne-Shimony-Holt inequality by almost three standard deviations (S = 2.64?±?0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building multiplexed quantum repeaters for long-distance quantum networks.  相似文献   

15.
A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.  相似文献   

16.
McKeever J  Boca A  Boozer AD  Buck JR  Kimble HJ 《Nature》2003,425(6955):268-271
Conventional lasers (from table-top systems to microscopic devices) typically operate in the so-called weak-coupling regime, involving large numbers of atoms and photons; individual quanta have a negligible impact on the system dynamics. However, this is no longer the case when the system approaches the regime of strong coupling for which the number of atoms and photons can become quite small. Indeed, the lasing properties of a single atom in a resonant cavity have been extensively investigated theoretically. Here we report the experimental realization of a one-atom laser operated in the regime of strong coupling. We exploit recent advances in cavity quantum electrodynamics that allow one atom to be isolated in an optical cavity in a regime for which one photon is sufficient to saturate the atomic transition. The observed characteristics of the atom-cavity system are qualitatively different from those of the familiar many-atom case. Specifically, our measurements of the intracavity photon number versus pump intensity indicate that there is no threshold for lasing, and we infer that the output flux from the cavity mode exceeds that from atomic fluorescence by more than tenfold. Observations of the second-order intensity correlation function demonstrate that our one-atom laser generates manifestly quantum (nonclassical) light, typified by photon anti-bunching and sub-poissonian photon statistics.  相似文献   

17.
A semiconductor source of triggered entangled photon pairs   总被引:1,自引:0,他引:1  
Entangled photon pairs are an important resource in quantum optics, and are essential for quantum information applications such as quantum key distribution and controlled quantum logic operations. The radiative decay of biexcitons-that is, states consisting of two bound electron-hole pairs-in a quantum dot has been proposed as a source of triggered polarization-entangled photon pairs. To date, however, experiments have indicated that a splitting of the intermediate exciton energy yields only classically correlated emission. Here we demonstrate triggered photon pair emission from single quantum dots suggestive of polarization entanglement. We achieve this by tuning the splitting to zero, through either application of an in-plane magnetic field or careful control of growth conditions. Entangled photon pairs generated 'on demand' have significant fundamental advantages over other schemes, which can suffer from multiple pair emission, or require post-selection techniques or the use of photon-number discriminating detectors. Furthermore, control over the pair generation time is essential for scaling many quantum information schemes beyond a few gates. Our results suggest that a triggered entangled photon pair source could be implemented by a simple semiconductor light-emitting diode.  相似文献   

18.
Demonstration of a quantum teleportation network for continuous variables   总被引:1,自引:0,他引:1  
Yonezawa H  Aoki T  Furusawa A 《Nature》2004,431(7007):430-433
Quantum teleportation involves the transportation of an unknown quantum state from one location to another, without physical transfer of the information carrier. Although quantum teleportation is a naturally bipartite process, it can be extended to a multipartite protocol known as a quantum teleportation network. In such a network, entanglement is shared between three or more parties. For the case of three parties (a tripartite network), teleportation of a quantum state can occur between any pair, but only with the assistance of the third party. Multipartite quantum protocols are expected to form fundamental components for larger-scale quantum communication and computation. Here we report the experimental realization of a tripartite quantum teleportation network for quantum states of continuous variables (electromagnetic field modes). We demonstrate teleportation of a coherent state between three different pairs in the network, unambiguously demonstrating its tripartite character.  相似文献   

19.
Quantum nature of a strongly coupled single quantum dot-cavity system   总被引:1,自引:0,他引:1  
Cavity quantum electrodynamics (QED) studies the interaction between a quantum emitter and a single radiation-field mode. When an atom is strongly coupled to a cavity mode, it is possible to realize important quantum information processing tasks, such as controlled coherent coupling and entanglement of distinguishable quantum systems. Realizing these tasks in the solid state is clearly desirable, and coupling semiconductor self-assembled quantum dots to monolithic optical cavities is a promising route to this end. However, validating the efficacy of quantum dots in quantum information applications requires confirmation of the quantum nature of the quantum-dot-cavity system in the strong-coupling regime. Here we find such confirmation by observing quantum correlations in photoluminescence from a photonic crystal nanocavity interacting with one, and only one, quantum dot located precisely at the cavity electric field maximum. When off-resonance, photon emission from the cavity mode and quantum-dot excitons is anticorrelated at the level of single quanta, proving that the mode is driven solely by the quantum dot despite an energy mismatch between cavity and excitons. When tuned to resonance, the exciton and cavity enter the strong-coupling regime of cavity QED and the quantum-dot exciton lifetime reduces by a factor of 145. The generated photon stream becomes antibunched, proving that the strongly coupled exciton/photon system is in the quantum regime. Our observations unequivocally show that quantum information tasks are achievable in solid-state cavity QED.  相似文献   

20.
Schr?dinger's cat is a Gedankenexperiment in quantum physics, in which an atomic decay triggers the death of the cat. Because quantum physics allow atoms to remain in superpositions of states, the classical cat would then be simultaneously dead and alive. By analogy, a 'cat' state of freely propagating light can be defined as a quantum superposition of well separated quasi-classical states-it is a classical light wave that simultaneously possesses two opposite phases. Such states play an important role in fundamental tests of quantum theory and in many quantum information processing tasks, including quantum computation, quantum teleportation and precision measurements. Recently, optical Schr?dinger 'kittens' were prepared; however, they are too small for most of the aforementioned applications and increasing their size is experimentally challenging. Here we demonstrate, theoretically and experimentally, a protocol that allows the generation of arbitrarily large squeezed Schr?dinger cat states, using homodyne detection and photon number states as resources. We implemented this protocol with light pulses containing two photons, producing a squeezed Schr?dinger cat state with a negative Wigner function. This state clearly exhibits several quantum phase-space interference fringes between the 'dead' and 'alive' components, and is large enough to become useful for quantum information processing and experimental tests of quantum theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号