首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 359 毫秒
1.
将2,2′-二甲基-4,4′-二苯氧基二苯砜(o—CH3-DPODPS)、二苯醚(DPE)、对苯二甲酰氯(IPC)和间苯二甲酰氯(IPC)四种单体,按一定的配比,在无水AlCl3和N,N-二甲基甲酰胺(DMF)存在下,于1,2-二氯乙烷(DCE)中进行低温溶液共缩聚反应,合成了一系列o—CH3-DPODPS/DPE/TPC/IPC四元共聚物.用IR、WAXD、DSC和TG等方法对共聚物进行了表征和性能测试.研究结果表明,该系列共聚物有较高的玻璃化温度,但熔融温度较低,热分解温度均在450℃以上.共聚物具有较好的耐溶剂性.  相似文献   

2.
以2,2’,6,6’-四甲基-4,4’-二苯氧基二苯砜(o-M2DPODPS)作为第三单体与二苯醚(DPE)、间苯二甲酰氯(IPC),在无水AlCl3和N,N-二甲基甲酰胺(DMF)的存在下,于1,2-二氯乙烷(DCE)中进行低温溶液缩聚,合成了一系列含有双邻位甲基侧基的聚芳醚砜醚酮酮共聚物,用IR、DSC、WAXD、TGA等方法对其进行了表征.结果表明:随着o-M2DPODPS/DPE比例的不断增加,共聚物的熔融温度逐渐下降,结晶度也随之下降,而玻璃化转变温度升高,具有良好的耐热性能,溶解性能也得到较大的改善.  相似文献   

3.
杂环聚芳醚砜、聚芳醚酮及其共聚物合成与性能研究   总被引:7,自引:0,他引:7  
以自制的新型类双酚化合物4-(2-甲基-4-羟基苯基)-2,3-二氮杂萘-1-酮(mM-HPPZ)为单体,与4,4′-二氟二苯酮,4,4′-二氯二苯砜进行溶液缩聚反应,合成了一类新型间甲基取代聚芳醚砜(PPES)、聚芳醚酮(PPEK)及其共聚物聚芳醚砜酮(PPESK,n(S)/n(K)=1/1)材料,并对其聚合条件作了初步探讨;利用核磁共振、红外光谱分析研究了双酚单体及其聚合物的结构,利用DSC、TGA对聚合物的耐热性能进行了分析。实验结果表明,该类双酚单体具有与双酚类似的活性,可以进行聚合反应,新型间甲基取代聚芳醚玻璃化转变温度高(Tg=520-558K);耐热稳定性好,其在氮气氛下5%热失重温度为693K左右,合成的间甲基取代聚芳醚砜、聚芳醚酮及其共聚物聚芳醚砜酮在氯仿、四氯乙烷、四氢呋喃和酰胺类溶剂中可溶解成膜。  相似文献   

4.
以无水AlCl3/二氯乙烷(DCE)/N,N-二甲基甲酰胺(DMF)为复合溶剂体系,在低温条件下,以4,4’-二苯氧基二苯砜(DPODPS)、对苯二甲酰氯(TPC)、4,4’-联苯二甲酰氯(BPPC)为原料通过亲电共缩聚反应制得一系列聚芳醚砜醚酮酮(PESEKKs),用FT-IR、DSC、TG、WAXD等技术对聚合物做了表征.结果表明:随着BPPC含量的增加,共聚物的Tg从194 ℃上升到210 ℃,Tm从223 ℃增加到238 ℃,热分解温度均大于550 ℃,聚合物的耐热性能得到显著提升.经过检测,共聚物的溶解性能良好.  相似文献   

5.
以4,4′-二(4-氯甲酰基苯氧基)二苯砜(SODBC)与4,4′-二苯氧基二苯砜(DPODPS)、4,4′-二(2-甲基苯氧基)二苯砜(o-Me-DPODPS)、4,4′-二(3-甲基苯氧基)二苯砜(m-Me-DPODPS)和4,4′-二(2,6-二甲基苯氧基)二苯砜(o-Me2-DPODPS)等为单体在1,2-二氯乙烷(DCE)、N-2-甲基吡咯烷酮(NMP)、无水三氯化铝(AlCl3)溶剂催化剂体系中,通过低温溶液亲电共缩聚合成了聚芳醚砜醚酮(PESEK),邻位、间位甲基取代、双邻位甲基取代的聚芳醚砜醚酮(o-Me-PESEK、m-Me-PESEK、o-Me2-PESEK)聚合物.用FT-IR、1H NMR、DSC、TGA、WAXD等对聚合物进行了表征,研究了聚合物的溶解性.结果表明:聚合物具有较高的玻璃化转变温度(Tg)、良好的热稳定性和优良的溶解性.  相似文献   

6.
含间苯基及甲基侧基聚芳醚砜醚酮酮的合成与表征   总被引:3,自引:3,他引:0  
以2,2’-二甲基-4,4’-二苯氧基二苯砜(α—CH3-DPODPS)、对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)为单体,通过亲电缩聚反应,合成了一系列主链含四面体构型的砜基及其醚键邻位含有甲基的新型聚芳醚砜醚酮酮聚合物.结果表明,该类聚合物具有较高的玻璃化转变温度(Tg)和良好的耐热性.  相似文献   

7.
在无水AlCl3存在下,将2,6-二苯氧基苯甲腈(DPOBN),4,4′-二苯氧基二苯砜(DPODPS)按照一定的摩尔配比与对-苯二甲酰氯于N-甲基吡咯烷酮/二氯乙烷复合溶剂中进行三元共缩聚反应,合成了一系列含氰侧基的聚醚醚酮酮/聚醚砜醚酮酮共聚物.用IR、DSC、TGA、WAXD等方法对其结构和性能进行了表征.结果表明,所合成的共聚物均为非晶态聚合物,其玻璃化转变温度为162~195℃;TGA分析表明其热分解温度为501~545℃,说明所合成的共聚物具有优异的耐高温性能.共聚物的溶解性能测试结果表明,共聚物都能在NMP、DMF、DMSO等强极性非质子溶剂中溶解及在DCE、THF、CHCl3等普通溶剂中溶解或溶胀.  相似文献   

8.
以对二溴苯和2,6-二甲基苯酚为原料合成高纯度1,4-二(2,6-二甲基苯氧基)苯,以1,2-二氯乙烷(DCE)为溶剂,无水三氯化铝/N,N-二甲基甲酰胺(DMF)为复合催化溶剂体系,与对苯二甲酰氯(TPC)或间苯二甲酰氯(IPC)进行低温溶液缩聚,得到一类含甲基取代聚芳醚醚酮酮(M2PEEKK)聚合物.用FT-IR,1H NMR,DSC,TGA,WAXD等分析技术对聚合物进行表征.  相似文献   

9.
目的合成一种新型既可溶解又耐高温的聚芳醚。方法从分子设计的角度出发,研究最佳合成方法及合成途径。结果合成了一种新型不对称杂环类双酚单体4-(2,5-二甲基-4-羟基苯基)二氮杂萘酮,分别与4种活性双卤单体经芳香亲核取代缩聚,制备了一系列聚芳醚聚合物。该系列聚芳醚特性粘度范围在0.39-0.79dL/g,玻璃化温度在232-284℃,氮气中5%和10%热失重温度分别是421-440℃和434-453℃,表现出良好的热性能。它们均为无定形结构,在室温下易溶于NMP、DMAc、DMF、Py、CHC13等有机溶剂中。结论该方法适宜于合成既可溶解又耐高温的聚芳醚。  相似文献   

10.
本文以无水三氯化铝(AlCl_3)为催化剂、1,2-二氯乙烷(DCE)为溶剂,在N-甲基吡咯烷酮(NMP)存在下,将对苯二甲酰氯(TPC)、间苯二甲酰氯(IPC)、二苯醚(DPE)和4,4′-二苯氧基二苯砜(DPODPS)进行低温溶液共缩聚反应,合成了聚醚酮酮和聚醚醚酮酮砜的无规共聚物(PEKK-PEEKKS)。用红外光谱、X-射线衍射、差热分析、热失重和溶解性试验对共聚物进行了表征。实验结果表明。随着分子链中砜基含量的增加,共聚物熔融温度和结晶度下降,但仍具有良好的耐溶剂性能和耐热性能。  相似文献   

11.
通过β-萘酚和4,4′-二氟二苯甲酮的缩合反应,合成了一种新芳醚单体-4,4′-二(β-萘氧基)二苯甲酮,将其在亲电反应条件下和二苯醚、芳二酰氯进行共缩聚反应,制备了聚醚酮酮/含萘环聚醚酮醚酮酮无规共聚物,用IR、WAXD、DS、TG和溶解性试验等方法对其进行了表征。  相似文献   

12.
采用红外光谱、广角X光衍射、示差扫描量热分析法研究全间位聚醚醚酮酮(PEEKmK)的基本物性与结晶行为。实验结果表明:PEEKmK红外光谱中1030cm ̄(-1)处有一特征吸收峰,其广角X光衍射谱在20.7°处的衍射峰消失。在不同温度下对PEEKmk无定形样品进行热处理表明:在较高温度(200℃~240℃)下样品才能结晶,其结晶程度远小于全对位聚醚醚酮酮。  相似文献   

13.
以4,4′-二苯氧基二苯砜(DPODPS)、对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)为单体,无水AlCl3/二氯乙烷(DCE)/N,N-二甲基甲酰胺(DMF)为催化溶剂体系,通过低温溶液共缩聚反应,合成系列聚芳醚砜醚酮酮(PESEKKS),用IR、DSC、WAXD、TG等技术对聚合物进行了结构和性能的表征.研究结果表明,随着高分子主链中间位苯基结构单元的增加,对共聚物玻璃化转变温度(Tg)影响不大,熔融温度(Tm)和结晶度则逐渐降低,但仍保持良好的耐热性,溶解性得到进一步改善.  相似文献   

14.
以二甲基二苄基硅烷(DMDPMS)作为第3种单体,与4,4’-二苯氧基苯(PPOP)和间苯二甲酰氯(IPC)共缩聚,以1,2-二氯乙烷(DCE)为溶剂、AlCl3为催化剂、N,N-二甲基甲酰胺(DMF)为助剂,合成了系列新线型高分子量的主链含硅杂原子结构的聚芳硅酮酮(PSiKK)/聚醚醚酮酮(PEEKK)无规共聚物,并用IR、DSC、WAXD、TGA等技术对共聚物进行了表征与分析,考察了共聚物的热性能、溶解性能和结晶性能.结果表明,随着DPMDPS含量的增加,聚合物的玻璃化转变温度(Tg)、熔融温度(Tm)和热分解温度(Td)总体上呈下降趋势,溶解性能逐步得到改善.当共聚物中DMDPMS的含量小于10%时,该系列聚合物乃可达501℃以上,Tg达14.8℃.有趣的是,少量DMDPMS的引入,不但没有降低PEEKK的结晶性,反而能促使其结晶,但硅结构单元含量增加到一定程度后,结晶度逐渐下降;当硅基含量达到50%时,聚合物接近非晶态.  相似文献   

15.
研究了微波辐射下,以无水碳酸钾为催化剂,4,4′-二氟二苯甲酮(DFBP)和4,4′-联苯酚发生亲核取代反应制备聚醚醚酮(PEEK)。结果表明:相对于常规加热而言,微波加速了反应的进行,产物PEEK特性粘度值为0.53dL/g.对于2种不同制备方法所得到的产物用IR、XRD、TGA进行了表征.在N2中的10%热失重温度均为554℃,说明产物具有很好的热稳定性.XRD实验结果表明:合成的PEEK具有半结晶性能.  相似文献   

16.
综述近年来磺化聚醚醚酮(SPEEK)交换膜的制备、性能及应用.磺化聚醚醚酮可以通过直接聚合法和后磺化法合成.相对于全氟离子交换膜(PFI),合成后的SPEEK膜在成本和阻醇性能等方面具有优势,但是导电性能较弱.溶剂、磺化度和温度对磺化聚醚醚酮的导电性能有较大影响,它们将是提升SPEEK导电性能的主要研究领域.  相似文献   

17.
以4,4’-二(β萘氧基)二苯砜,对苯二甲酰氯和间苯二甲酰氯为单体,通过亲电综电聚反应,合成了一系列主链含萘环的新型聚芳醚砜醚酮酮共聚物,并用IR、DSC、WAXD等方法对其进行了分析表征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号