首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
采用化学共沉淀法,在80℃水浴以及900℃氩气氛围中煅烧3 h获得锰锌铁氧体.当煅烧时间延长至6 h,锰锌铁氧体因缺氧而产生氧化亚铁.铁氧体的磁性能随Al3+的掺杂量以及锰锌比例而变化,当Al3+的掺杂量为0.1,锰锌物质的量比为0.65∶0.25时,样品的Ms=59.8 Am2·kg-1,Hc=0.32 k A·m-1,Mr=0.13 Am2·kg-1,具有较好的软磁性能.  相似文献   

2.
采用溶胶-凝胶法制备了系列Ni_(1-x)Zn_xFe_2O_4(x=0,0.2,0.4,0.6,0.8,1.0)粉末样品,利用X射线衍射(XRD)、场发射扫描电镜(FESEM)和振动样品磁强计(VSM)对样品的晶体结构、形貌及磁性进行了研究.结果表明,750℃是制备样品的最佳煅烧温度,在此温度下制备的Ni_(1-x)Zn_xFe_2O_4均为单一尖晶石相.NiFe2O4纳米颗粒类似球形,大小均匀且分散性好;掺杂Zn~(2+)后,颗粒尺寸增大,有少量团聚.随着Zn~(2+)含量的增加,饱和磁化强度(Ms)先增大后减小,在x=0.4时达最大值,Ms=65.63emu·g~(-1);矫顽力Hc呈现持续降低趋势,x=0时有较高的矫顽力,Hc=196.09Oe.  相似文献   

3.
利用共沉淀法成功地合成了(x=0、0.2、0.2、0.4和0.8)纳米颗粒并进行了退火处理.对样品进行了XRD、FT-IR、TG-DSC和VSM等表征.结果显示,样品前驱体中存在少量的杂质如吸收水和硝酸盐,退火处理是获得单相和高度结晶Co-Ni尖晶石铁氧体的必备条件.所有退火样品均是单相立方尖晶石结构纳米晶粒,其平均尺寸在40~60 nm的范围.晶格常数随着Co掺杂含量增加而增加.比表面积测试显示Co掺杂量的增加在一定程度上减少了样品的表面体积比,有利于CoNi铁氧体的晶粒生长.样品饱和磁化(Ms)和矫顽力(Hc)与钴掺杂量密切相关.Ms值从37.5 emu/g(x=0)增加到62.0 emu/g(x=0.8),这是由于较高的掺杂Co~(2+)阳离子磁矩的增强导致A和B亚晶格之间的超交换相互作用增强.矫顽力Hc的大小从73.0 Oe(x=0)到558.3 Oe(x=0.8),这主要是由于掺杂Co~(2+)阳离子具有比Ni~(2+)阳离子更大的磁晶各向异性常数.  相似文献   

4.
纳米晶CoFe2-xCexO4的结构与磁性能研究   总被引:1,自引:0,他引:1  
采用化学共沉法制备了纳米尺度的CoFe2-xCexO4(x=0~0.3)粉料,分别在不同温度下进行了热处理,利用X射线衍射仪(XRD)、振动样品磁强计(VSM)对样品的结构和磁性进行了测量和分析.实验结果表明:在铈掺杂量x≤0.2时样品形成了单一的具有尖晶石结构的钴铁氧体相,而x〉0.2时钴铁氧体相和CeO2相并存;铈掺杂量对样品的磁性能有较强的影响,在铈含量较低(x≤0.2)时,比饱和磁化强度σs变化不大,矫顽力Hc大幅度增大,而在x〉0.2之后二者都急剧下降,在x=0.1附近样品能同时获得较大的Hc和σs值.  相似文献   

5.
采用固相反应法制备W掺杂Li_7La_3Zr_2O_(12)(Li_(7-2x)La_3Zr_(2-x)W_xO_(12))陶瓷电解质,探究掺杂量及烧结温度对样品烧结特性、晶体结构、显微形貌及离子电导率的影响。结果表明:W掺杂可以稳定立方相Li_(7-2x)La_3Zr_(2-x)W_xO_(12),当x=0.3时,1 200℃烧结20 h制备的样品30℃下离子电导率达到最高值5.77×10~(-4) S/cm,相较于未掺杂样品提高一个数量级;以x=0.3为固定掺杂量、改变不同烧结温度,1 180℃烧结20 h获得的样品离子电导率达到最高为7.05×10~(-4) S/cm。当x=0.1~0.3时,晶粒尺寸分布均匀,在10~20μm左右;当x=0.4时,产生晶粒熔合现象且有晶体析出,这种特殊的显微形貌导致样品电性能劣化。  相似文献   

6.
Nd等价取代Bi_4Ti_3O_(12)-SrBi_4Ti_4O_(15)的A位,形成SrBi_(8-x)Nd_xTi_7O_(27)(x=0.00~1.50)共生陶瓷.结果表明:Nd掺杂未改变晶体的共生结构,样品剩余极化(2P_r)在掺杂量x=0.50时取得极大值,为32.3×10~(-2) C·m~(-2),比未掺杂时增加了70%,而矫顽场则从未掺杂时的90.5×10~5 V·m~(-1)上升为103×10~5 V·m~(-1).Nd掺杂使得样品的居里温度(t_C)有所下降,x=0.50时的t_C为538℃.掺杂使得样品的压电性能明显改善,压电系数d_(33)从未掺杂时的6 pC·N~(-1)增加到x=0.50时的11 pC·N~(-1).  相似文献   

7.
用溶胶凝胶法制备了Cu低掺杂的La0.7Ca0.3Mn1-xCuxO3(x=0%,1%,2%,3%,4%,5%)系列多晶材料.采用振动样品磁强计测量了系列样品的热磁曲线并获得了相应的居里温度,实验结果表明居里温度随着Cu掺杂量的增加而减少.在77~350 K温度范围内测量了样品的电阻和磁电阻,结果表明样品电阻率与温度的关系均具有明显的电阻峰结构.当x=5%时,开始出现双电阻峰结构;掺杂量x为1%,2%,3%,5%的样品在外场为0.4 T时存在较大的磁电阻极大值,分别为30.5%,25.4%,22.4%,18.8%,均大于未掺杂(x=0%)的13.5%.双交换(DE)模型简单地解释了Cu低掺杂对电阻及磁电阻行为的影响.  相似文献   

8.
本文采用顶部籽晶熔融织构方法(TSMTG),制备出了配比为GdBa2Cu3O7-δ(Gd123):Gd2BaCuO5(Gd211):Gd2Ba4CuNbOy(GdNb2411)=1:(0.4-x):x的系列单畴GdBCO超导块材(其中x=0,0.02,0.04,0.06,0.08,0.1,0.12,0.14,0.16),并研究了不同GdNb2411掺杂量对样品生长形貌和磁悬浮力的影响.结果表明:在该掺杂范围内,均有可能制备出单畴GdBCO超导块材,且样品的表面生长形貌与掺杂量x密切相关.当x≤0.06mol时,样品上表面光滑平整且四径分明,表现出通常的单畴形貌;当x≥0.08mol时,样品的单畴区域不再光滑和平整,表面出现褶皱,且随着掺杂量的增加,单畴区域越来越小.样品的磁悬浮力测试结果表明:随着掺杂量的增加,其磁悬浮力先增大后减小,当x=0.06mol时,样品的磁悬浮力达到最大25N.实验结果对研究纳米粒子的磁通钉扎作用及进一步提高GdBCO超导块材的性能有重要意义.  相似文献   

9.
Nd掺杂BiFeO3多铁陶瓷的磁电性能   总被引:1,自引:0,他引:1  
采用快速液相烧结工艺制备出Bi1-xNdxFeO3(BNFO-x,x=0.00~0.20)多铁陶瓷样品,研究了掺杂对BiFeO3微观结构和铁电、磁电及介电性能的影响.X射线衍射谱显示样品BiFeO3的相均已形成,且在掺杂量x=0.10附近出现结构相变.掺杂后样品的剩余磁化(2Mr)和剩余极化(2Pr)都有一定程度的提高,以铁电性能改善最为明显.当掺杂量x=0.10时,样品的耐压性能最好,可观察到完全饱和的电滞回线,且剩余极化达到最大值, 2Pr=0.494 C·m-2,比未掺杂时提高了117.6%. 随着Nd的掺杂,样品介电常数随温度变化的关系曲线在尼尔温度之前179℃附近多出一个介电峰,但是在BiFeO3样品中并未发现该介电峰.  相似文献   

10.
本文采用顶部籽晶熔融织构法(TSMTG)成功地将Bi2O3掺杂到YBCO超导块材中,研究了Bi2O3掺杂含量对单畴YBCO超导块材生长形貌和磁悬浮力的影响.结果表明,在YBa2Cu3O7-δ(Y123):Y2BaCuO5(Y211)=1:0.4不变的情况下,掺杂的Bi2O3粉体在样品内部均生成了Y2Ba4CuBiOx纳米粒子.当Bi2O3添加量x≤1.5wt%时,样品均可长成完整的单畴YBCO超导块材,且样品的磁悬浮力随着Bi2O3掺杂量的增加而增大;当x1.5wt%时,YBCO超导块材的单畴区域随着Bi2O3掺杂量的增加而逐渐减小,且随机成核现象严重,磁悬浮力降低;当x=1.5wt%时,样品的磁悬浮力最大.该结果对缩短样品制备的周期及进一步提高超导块材性能具有十分重要的意义.  相似文献   

11.
【目的】通过固相反应法制备La_(0.7)Ce_xBa_(0.3-x)MnO_3(x=0,0.05,0.10,0.15,0.20)的钙钛矿锰氧化物,研究Ce元素的不同掺杂量对原体系磁热性能的影响。通过Ce元素的掺杂,来调节原体系过高的居里温度以及改善体系的磁热性能。【方法】通过X射线粉末衍射的方式确定其单相结构,并使用振动样品磁强计对钙钛矿样品进行磁性能的测试。【结果】La0.7CexBa0.3-xMnO3(x=0,0.05,0.10,0.15,0.20)的居里温度分别为342.1K,319.8K,270.0K,244.3K和199.7K。在0~2T的外磁场下,该体系的最大磁熵变分别为2.54J/(kg·K),2.32J/(kg·K),2.51J/(kg·K),2.03J/(kg·K)和1.87J/(kg·K),且最大磁熵变都在居里温度附近。【结论】随着Ce元素掺杂量的增加,化合物居里温度逐渐降低;而最大磁熵变则呈先减小后增大又减小的趋势。同时由Arrott曲线判断这5个样品的相变都是二级相变。当Ce元素的掺杂量为0.05~0.10时,该体系的居里温度在室温附近,且最大磁熵变仍保持较大的值。  相似文献   

12.
本研究采用真空电弧熔炼法制备了MnBi_(1-x)Cr_x(x=0.04,0.08,0.12,0.16)系列合金,利用X射线衍射仪(XRD)、Rietveld全谱拟合和振动样品磁强计(VSM)研究和测定MnBi_(1-x)Cr_x系列合金样品的晶体结构和磁性能。结果发现,退火后的样品主相是低温相(LTP)MnBi(空间群:P6_3/mmc(194))。Rietveld全谱拟合分析确定每个样品中各相的含量并解析出主相MnBi_(1-x)Cr_x的晶体结构。M(M=Bi,Cr)原子之间的原子间距d_(M-M)随着掺杂量增大而增大。M原子与Mn原子的间距d_(M-Mn)随着掺杂量增大而减小。在400K时趋于饱和,且在掺杂量小于x=0.12时,饱和磁化强度随着掺杂量的增加而增大,在掺杂量大于x=0.12时,饱和磁化强度已经达到饱和,为20.55emμ/g,且不随掺杂含量的变化而变化。随着Cr含量的增加,矫顽力亦逐渐增加,并且在掺杂量为x=0.12时达到最大值。随着测试温度的上升,合金矫顽力均呈上升趋势。MnBi_(1-x)Cr_x(x=0.04,0.08,0.12,0.16)的德拜温度分别为378.46K,369.52K,354.62K和351.64K。  相似文献   

13.
层状钙钛矿铁电体材料B i4-xN dxT i3O12(x=0.0~0.9)陶瓷样品适量N d掺杂可提高B i4T i3O12(B IT)的铁电性能.当掺杂量为0.6时,样品的剩余极化达到最大值.样品的相变温度(tc)随掺杂量的增加而降低,当掺杂量大于0.6时,tc下降速率增大.随着N d含量的增加(x>0.6),样品的弛豫程度明显提高.N d掺杂降低了样品的氧空位浓度,提高了B IT样品的铁电性能.  相似文献   

14.
采用低热固相法在700 ℃合成了 (1-x)Li2MnO3·xLiNi1/2Mn1/2O2 (x=0.3, 0.5, 0.7)正极材料,并对其相组成、结构、微观形貌进行了表征,对电化学性能进行了测试. 实验结果表明,x=0.7时合成样品中出现尖晶石LiMn2O4相. X=0.3、0.5材料在循环中比容量逐渐升高,后续循环稳定性较好. Fe掺杂加速了x=0.5材料容量的上升,第二次循环时放电比容量高达189.5 mAh/g.  相似文献   

15.
用传统的固相烧结工艺,制备了铌掺杂SrBi_4Ti_4O_(15)(SBTi)铁电陶瓷SrBi4-x/3Ti4-xNbxO15(SBTN-x),Nb掺杂量x=0.00,0.003,0.012,0.03和0.06.X射线衍射的结果表明,所有样品均为单一的层状钙钛矿结构相,Nb掺杂未改变SBTi的晶体结构.铁电测量结果表明,Nb掺杂使SBTi的铁电性能得到较大改善.随掺杂量x的增加,样品的剩余极化(2Pr)呈现出先增大,后减小的规律.在x=0.03时,2Pr达到最大值24.7μC/cm2,而SrBi4Ti4O15的2Pr仅为15.8μC/cm2,掺杂使2Pr提高近60%.同时,样品的矫顽场几乎不随掺杂量的改变而变化.掺杂后,样品的居里温度变化很小,表明Nb对SrBi_4Ti_4O_(15)的B位掺杂基本未影响材料的热稳定性能.  相似文献   

16.
掺杂Mo对Li1+xV3O8物相和高温阴极放电性能的影响   总被引:3,自引:0,他引:3  
利用固相反应法制备Li1 xV3-yMoyO8(0≤y≤0.6)并对其进行了500 ℃和550 ℃时的放电性能测试. 采用X射线衍射测定掺杂Mo对Li1 xV3O8物相的影响, 用电子扫描电镜观察粉末的形貌, 用函数记录仪记录电压随时间的变化. 研究结果表明: 当y>0.2时, 物相为Li1 xV3O8和V2O5;当y≤0.2时, 物相为Li1 xV3O8;掺杂Mo后的粉末形貌基本不发生变化;当放电电流密度为100 mA/cm2, 终止电压为1.8 V时, Mo的掺杂使Li1 xV3O8在500 ℃的最高电压提高约0.3 V, 比容量提高约300 A·s/g;550 ℃时嵌入Li 的量最多可达x=3.8, 接近Li1 xV3O8嵌锂量的理论值x=4.  相似文献   

17.
以CH_3COOLi·2H_2O、FeC_2O_4·H_2O、NH_4H_2PO_4、Eu_2O_3及C_6H_(12)O_6为原料,采用两步高温固相法合成了锂离子电池正极材料LiFe_(1-x)Eu_xPO_4/C(x=0,0.06,0.08,0.10),通过XRD,SEM等方法对其物相结构和形貌进行了表征,结构分析表明:LiFe_(1-x)Eu_xPO_4/C(x=0,0.06,0.08,0.10)样品具有橄榄石型晶体结构,空间群为Pnma.Eu的掺杂可使样品颗粒明显细化,引起晶胞参数c值、c/a比值增大、I111/I311比值增大,P-O键长增大.CV和EIS测试结果表明,Eu的掺杂使样品的放电容量增加,提高了循环稳定性能,改善了样品发生电化学反应的动力学性能,电荷转移电阻Rct明显减小,交换电流密度i_0增大.  相似文献   

18.
通过磁性、电子输运和磁电阻等性质的测量,我们研究了La0.67Sr0.33CoO3的Fe掺杂效应.发现当Fe掺杂直到x=0.3时,样品的结构没有明显变化,但掺杂将降低居里温度Te和磁化强度M.电阻率在低掺杂(x≤0.1)时显示金属性输运行为,而在高掺杂(x=0.2和0.3)时则显示半导体行为.而且,Fe掺杂削弱了居里温度Te处的MR峰值,但增加了低温下(T≤Te)的MR值.La0.67Sr0.33CoO3的Fe掺杂效应和磁电阻的起源可由外加磁场导致的自旋态转变来解释.  相似文献   

19.
用溶胶凝胶法成功制备Bi1-xLaxFeO3(BLFO,x=0.00~0.40)粉体样品,用X射线衍射谱和拉曼光谱表征样品的结构,并用Rietveld精修法拟合样品的XRD谱.结果显示随着掺La量x的增加,晶格常数逐渐减小,晶胞体积线性减小,当掺杂量增加到x=0.30时,BLFO粉体样品的晶体结构由R3c的三角相转变为Amn2的正交相结构.  相似文献   

20.
采用固相法合成了0.7BiFeO3-0.3BaTiO3-xmolGd2O3固溶体(x=0,0.003,0.006,0.009,0.012).XRD测试结果显示:0.7BiFeO3-0.3BaTiO3在室温下是赝立方相,Gd2O3的掺入抑制了四方相的形成,随着Gd3+掺入量的增加,样品结构从赝立方相向三方相转变.介电性能测试表明:较高频率下,相对于其它样品,掺杂量为0.009和0.012的样品的介电性能明显提高;介电损耗随掺杂量增加明显增大.同时相关测试结果显示:Gd掺杂使样品的介温曲线变平缓,尤以掺杂量为0.009样品最为明显,其介电损耗曲线变化亦较缓慢,表明该样品介电性能的稳定性有较大提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号