首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
编者按     
<正>陶瓷作为人类文明史上最早发明和使用的人工材料之一,发祥于中国,是中华民族智慧的象征.历经千年发展和演化,其内涵已远远超越了传统陶瓷的范畴,形成了包括传统陶瓷以及先进结构陶瓷、功能陶瓷和新型陶瓷基复合材料等非传统陶瓷在内的一个庞大的家族体系.其中结构陶瓷作为先进陶瓷材料的重要组成部分,因其所具有的高强、高硬、耐高温和抗腐蚀等优异特性,在高温、腐蚀等严酷环境表现出巨大的应用潜力,令人期待.  相似文献   

2.
《科学通报》2021,66(24):3154-3170
核能系统兼具高温、高压、高辐射、高腐蚀等特性,严苛的服役环境对核用材料提出了极高的要求,相关材料的研发是其走向应用的重大挑战.相较于传统核用材料,碳化物陶瓷材料具有更好的高温辐照性能和更优异的综合热物理性能,其制备和应用成为新的研究热点.本文综述了碳化物陶瓷材料在新一代核能系统中的应用现状,重点阐述了核用碳化物陶瓷材料的应用领域、基本性能、制备方法和辐照性能,并展望了碳化物陶瓷材料在新一代核能系统中的应用前景和发展方向.  相似文献   

3.
非晶SiBCN陶瓷是一类独特的结构材料,具有低比重、高比强度、优异的高温损伤容限等特殊结构和性能,因此在高温防热结构部件上极具应用潜力。通过合理的结构与化学成分协同设计,可探索陶瓷形貌/微观结构演化及断裂行为的基本特征,从而进一步提高其力学性能,以满足实际应用需求。因此,文章以石墨、六方氮化硼、立方硅和硼等元素粉末为原料,提出了采用机械合金化结合高压烧结技术(1 000°C/3~5 GPa/30 min)制备致密非晶Si_2B_yC_2N(y=1.5~4)块体陶瓷的方法。通过XRD、SEM、TEM、TG等表征手段,研究了烧结压力诱导该系非晶陶瓷的组织结构演化、相变及热稳定性,并对其力学性能,特别是断裂行为进行了详细讨论。结果表明,提高烧结压力促使陶瓷基体由完全非晶态向晶态转变,部分块体陶瓷由大量非晶相、少量c-Si和/或t-BN(C)纳米晶相组成,显示出依赖于硼含量的物相组成。高压烧结有效地促进了陶瓷的烧结致密化,导致材料内自由体积的湮灭和"河流状"断裂形貌的产生。随着烧结压力的提高,陶瓷材料的体积密度、纳米硬度和杨氏模量单调增加。在相同烧结条件下,硼含量的增加削弱了非晶Si_2B_yC_2N(y=1.5~4)块体陶瓷的力学性能和热稳定性。1 000°C/5 GPa/30 min烧结制备的致密非晶Si_2B_(1.5)C_2N块体陶瓷的体积密度、纳米硬度和杨氏模量分别为2.69 g/cm~3、33.6±2.2GPa和414.2±16.5 GPa。  相似文献   

4.
非晶SiBCN陶瓷是一类独特的结构材料,具有低比重、高比强度、优异的高温损伤容限等特殊结构和性能,因此在高温防热结构部件上极具应用潜力。通过合理的结构与化学成分协同设计,可探索陶瓷形貌/微观结构演化及断裂行为的基本特征,从而进一步提高其力学性能,以满足实际应用需求。因此,文章以石墨、六方氮化硼、立方硅和硼等元素粉末为原料,提出了采用机械合金化结合高压烧结技术(1 000 oC/3~5 GPa/30 min)制备致密非晶Si2ByC2N(y=1.5~4)块体陶瓷的方法。通过XRD、SEM、TEM、TG等表征手段,研究了烧结压力诱导该系非晶陶瓷的组织结构演化、相变及热稳定性,并对其力学性能,特别是断裂行为进行了详细讨论。结果表明,提高烧结压力促使陶瓷基体由完全非晶态向晶态转变,部分块体陶瓷由大量非晶相、少量c-Si和/或t-BN(C)纳米晶相组成,显示出依赖于硼含量的物相组成。高压烧结有效地促进了陶瓷的烧结致密化,导致材料内自由体积的湮灭和“河流状”断裂形貌的产生。随着烧结压力的提高,陶瓷材料的体积密度、纳米硬度和杨氏模量单调增加。在相同烧结条件下,硼含量的增加削弱了非晶Si2ByC2N(y=1.5~4)块体陶瓷的力学性能和热稳定性。1 000 °C/5 GPa/30 min烧结制备的致密非晶Si2B1.5C2N块体陶瓷的体积密度、纳米硬度和杨氏模量分别为2.69 g/cm3、33.6±2.2GPa和414.2±16.5 GPa。  相似文献   

5.
热膨胀是陶瓷材料重要的物理性能.具有超低膨胀特性(α<1×10~(-6)/℃)的陶瓷材料在许多高技术领域有着重要的应用.80年代中期发现了以NaZr_2P_3O_(12)为母相的Na_2O—ZrO_2-P_2O_5-SiO_2系统超低膨胀陶瓷.由于它们还具有优良的抗热冲击性能、低的导热系数和适当的强度,有希望发展成理想的热机部件结构陶瓷材料.这些化合物通常具有磷酸锆钠型结构,属六方晶系(三方晶系,空间群R(?)c).其热膨胀参数可用两个主热膨胀系数α_α和α_(?)即垂直和平行于六方c轴的热膨胀系数来表示.这种由PO_4四面体和ZrO_6八面体共用顶角氧联结形成的开放式骨架结构,其某些离子可被广泛替代,形成一系列类似结构具有相异性能的化合物.本文研究不同组成的磷酸锆锶钾系统陶瓷材料的各个热膨胀系数随温度的变化及各向异性性质,以寻找零膨胀陶瓷的组分及探讨该类陶瓷何以具有超低热膨胀性能的本质.1 实验  相似文献   

6.
<正>氧化铝是重要基础材料,性能优异,价格低廉,是应用最广泛的陶瓷材料,被用作结构陶瓷、功能陶瓷及生物陶瓷,也是冶炼铝的原料.2014年氧化铝全球年产量达1.1亿t,中国产量约占43%.然而,氧化铝的脆性限制了其更广泛的应用.1987年Nature报道了德国萨尔州大学H.Gleiter研究小组发现纳米晶微结构的Ca F2和Ti O2陶瓷在低温时发生很大塑性变形,这一研究为解决陶瓷材料脆性问题提供了可能性.英国材料科学家Cahn在Nature撰文指出,纳米晶微结构是解决陶瓷脆性的战略途径.随后,纳米晶陶瓷研究在世  相似文献   

7.
自然信息     
陶瓷合成新工艺陶瓷合成新工艺,包括制备氮化硅陶瓷材料、制造碳化钨和硅化钌纤维,以及低温制备高温法得不到的氧化物陶瓷等。  相似文献   

8.
冯建雅 《科学通报》1990,35(13):1031-1031
添加Y_2O_3的四方ZrO_2多晶(Y-TZP)陶瓷是一类韧性极高的结构陶瓷材料,其高韧性主要来源于断裂过程四方ZrO_2(T-ZrO_2)的马氏体相变吸收了裂纹扩展能量。而T-ZrO_2的保留与相变特性除了与其在瓷体中所处的状态有关外,直接依赖于稳定剂Y_2O_3的含量以  相似文献   

9.
袁力建 《科学通报》1989,34(20):1547-1547
氮化硅(Si_3N_4)陶瓷以其优异的力学、热学性能跻身于最有发展前途的高温结构材料的行列。但它毕竟属于脆性材料。纤维补强是改善陶瓷脆性的有效途径。经碳纤维补强的氮化硅,其断裂功和断裂韧性均成倍提高。然而热压氮化硅需要加入少量添加剂,一般在1700℃以上才能热压致密。但由于氮化硅与碳纤维在1650℃将发生化学反应而使碳纤维受  相似文献   

10.
可以在高温氧化、剧烈热震、燃气流烧蚀等苛刻条件下服役的新型高温结构和多功能防热材料是现代航空航天技术发展的迫切需求之一.Si-B-C-N系非晶及纳米晶复相陶瓷组织结构独特,高温性能优异,在高温结构和多功能防热领域极具应用潜力.有机聚合物先驱体裂解法(有机法)在致密Si-B-C-N系块体陶瓷的制备方面受限,哈尔滨工业大学特种陶瓷研究所开创的机械合金化-热压法(无机法)工艺简单,制备材料组织结构均匀、性能优良,成为Si-B-C-N系致密块体陶瓷和耐高温构件的有效制备手段,弥补了有机法的不足,对于丰富和完善该材料的实验数据和理论研究具有重要意义.本文综述了无机法制备Si-B-C-N系陶瓷及复合材料在显微组织结构特征及演变规律、力学和热物理学性能、抗氧化性能、抗热震性能、耐烧蚀性能和相关机理分析等方面的新近成果,并展望了其发展趋势.  相似文献   

11.
12.
徐友仁 《科学通报》1987,32(5):386-386
氮化硅陶瓷作为热机用高温结构材料必须具备较高的高温强度和高温断裂韧性。最近的研究表明,以稀土氧化物作为烧结添加剂,有利于改善氮化硅的高温力学性能,其中添加Y_2O_3,和La_2O_3的热压氮化硅的抗弯强度能从室温一直保持到1300℃。但是稀土氧化物添加剂对氮化硅陶瓷的高温断裂韧性有何影响,至今未见报道。为研究稀土氧化物对高温断裂韧  相似文献   

13.
碳化硅(SiC)陶瓷材料具备优异的力学、热学、光学性能,在国防工业和国民生产中应用广泛.然而,传统陶瓷成形工艺在制备复杂SiC构件时面临周期长、成本高、复杂结构成形难等问题.增材制造(additive manufacturing)理论上可成形任意复杂结构,为复杂陶瓷构件的制备提供了有效手段,目前SiC陶瓷增材制造已成为本领域近年来的研究热点.本文针对SiC陶瓷增材制造的研究及应用进展进行了系统总结,详细论述SiC增材制造的原料设计与制备方法、工艺与装备、后处理技术、模拟仿真、性能评测及典型应用等内容,并对SiC陶瓷增材制造技术的未来发展进行了展望.  相似文献   

14.
纤维增强陶瓷基复合材料在高温使役性能方面表现出超越传统陶瓷材料的优异性能,与金属的连接构件在航空航天、核能、化工等高温系统中应用潜力巨大。纤维增强陶瓷基复合材料与金属的连接技术被广泛研究,钎焊是实现二者连接的最佳选择。文章重点论述钎焊纤维增强陶瓷基复合材料与金属所面临的挑战和科学问题,列举C_f/C、C_f/SiC和SiO_(2f)/SiO_2三种研究最为广泛的纤维增强陶瓷基复合材料与金属的钎焊实例,讨论钎料润湿行为、界面反应调控和接头应力调节的最新研究成果。可靠连接技术的发展,将会推动纤维增强陶瓷基复合材料的研究和应用。  相似文献   

15.
谢存毅 《科学通报》1994,39(17):1554-1554
内耗测量可以给出陶瓷材料内部结构扩散以及晶界的力学行为等性能.有关陶瓷材料的高温内耗早有不少报道.近来纳米陶瓷/氧化物的研究越来越引起人们的关注,纳米ZrO_2和SnO_2块体的低温内耗已做了一些研究.纳米Al_2O_3可广泛应用于制作催化剂及催化剂载体,精细陶瓷和荧光材料等,关于它的一些性能已作了不少探索,然而纳米Al_2O_3固体的内  相似文献   

16.
刘正义 《科学通报》1993,38(12):1146-1146
等离子喷涂ZrO_2陶瓷层(简称TBC_S)用作隔热层,可降低气冷高温部件表面温度100—200℃,已用于柴油机、燃气轮机领域.影响这种涂层广泛使用的主要原因是容易脱落,寿命较短.容易脱落的主要原因是:TBC_S本身的多孔性,易受腐蚀气体的腐蚀,陶瓷材料与金属基材的热膨胀不匹配产生的热应力大.为了减少TBC_S受气体的腐蚀,曾用有机物进行封  相似文献   

17.
金属疲劳这一概念是在上世纪中叶提出来的.工业大革命促进了钢铁和其他金属的广泛应用,尔后不久就发现金属构件在经受了交变载荷后会发生强度耗损乃至最后被破坏.例如,在当时的铁路运输中,车轴在使用了一段时间后有时会无缘无故地突然断裂,造成极大的祸害.材料在经受比引起静载荷断裂的应力值小得多的循环载荷时的失效现象称为疲劳.  相似文献   

18.
纤维增强陶瓷基复合材料在高温使役性能方面表现出超越传统陶瓷材料的优异性能,与金属的连接构件在航空航天、核能、化工等高温系统中应用潜力巨大。纤维增强陶瓷基复合材料与金属的连接技术被广泛研究,钎焊是实现二者连接的最佳选择。文章重点论述钎焊纤维增强陶瓷基复合材料与金属所面临的挑战和科学问题,列举Cf/C、Cf/SiC和SiO2f/SiO2三种研究最为广泛的纤维增强陶瓷基复合材料与金属的钎焊实例,讨论钎料润湿行为、界面反应调控和接头应力调节的最新研究成果。可靠连接技术的发展,将会推动纤维增强陶瓷基复合材料的研究和应用。  相似文献   

19.
施剑林 《科学通报》1992,37(16):1522-1522
许多金属和合金具有超塑性形变行为,而陶瓷的超塑性则是近年才发现并得到重视的。Y-TZP(Y_2O_3-Tetragonal Zirconia Polycrystals)多晶材料是其中最具代表性的具有高温超塑性的陶瓷。陶瓷超塑性的发现和研究不仅在观念上影响了人们对陶瓷脆性的认识,而且在实践上也将具有重要意义,为陶瓷材料的加工带来重大影响。我国的陶瓷超塑性研究尚处于起步阶段。材料性质(如晶粒尺寸)、形变速率等性能等均与国外有较大差距。本文报道用无压烧结法制得的细晶(~0.3μm)Y-TZP材料,达到很高形变速率和超塑性形变行为。  相似文献   

20.
铝硅酸盐无机聚合物及其转化制备的陶瓷材料具有节能环保、制备温度低、耐热性能良好、热学性能可调控的优点,因此在航空航天、原子能、生物以及化工等领域具有广阔的应用前景.此外,随温度升高,铝硅酸盐无机聚合物会转变为辉石或榴石陶瓷,具有可调控的力学和热学性能;铝硅酸盐无机聚合物的低温成型特性也使得增强的种类选择非常广泛,并且可以很方便地引入.因此铝硅酸盐无机聚合物技术为低成本成型制备高性能陶瓷和陶瓷基复合材料提供了一种新工艺.本文综述了铝硅酸盐无机聚合物热演变、结晶动力学、显微组织结构演变、性能演化等方面的主要研究进展,并阐述了碳纤维强韧铝硅酸盐无机聚合物复合材料的陶瓷化过程和性能演化研究,指出了今后的发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号