首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 89 毫秒
1.
多孔纳米Mg-Sn金属复合氧化物的制备及性能表征   总被引:3,自引:0,他引:3  
采用液相沉淀法制备Mg-Sn金属复合氢氧化物前驱体,在不同温度下加热分解,得到一系列Mg-Sn金属复合氧化物;通过差热及热重分析仪(TG/DTA)、X-射线衍射仪(XRD)和透射电子显微镜(TEM),分析了其前驱物、产物的结构、组成及形貌等特征。结果表明:Mg-Sn金属复合氢氧化物前驱体热分解得到的是多孔纳米材料,且低温(400,600,700℃)热分解得到的是非晶态的MgSnO3复合氧化物,高温(750,850℃)热分解得到的是四方相的MgSnO3和少量尖晶石型Mg2SnO4,900℃热分解得到的是MgO和SnO2的混合物。所得Mg-Sn金属复合氧化物均为多孔材料,而且孔径、结晶度及电化学性能均依赖于分解温度。若从容量和循环寿命折中考虑,850℃热分解试样的电化学性能最优。  相似文献   

2.
采用一种流变相法制备掺杂B和P非金属元素的SnO复合氧化物(TBP),对不同温度下热分解得到的产物结构及作为锂二次电池负极材料的电化学性能进行表征。结果表明,以比容量和循环性能折中考虑,500℃热处理试样的电化学性能较好。  相似文献   

3.
为改善氧化物负极材料的循环性能和充放电容量,采用沉淀法制备了作为锂离子电池负极材料的纳米CuO-Co3O4-NiO复合氧化物粉末。用X-射线衍射对其结构进行分析,透射电镜对其形貌进行表征,并对其电化学性能进行测试。结果表明,采用沉淀法可以制备出粒径范围为10~30 nm的纳米CuO-Co3O4-NiO复合氧化物;在40~50放电周期,放电容量保持率为94%。  相似文献   

4.
尖晶石型掺杂锂钛复合氧化物的性能研究   总被引:1,自引:0,他引:1  
陈猛  金江敏  李金媛 《应用科技》2007,34(10):58-60
采用高温固相法合成尖晶石型锂钛复合氧化物,并对材料进行Sn、Cr掺杂改性.采用XRD测试对材料进行表征,恒流充放电,电化学阻抗,循环伏安测试方法对材料进行电化学性能测试.实验结果表明,Sn、Cr复合掺杂提高了材料的容量,其中,ST首次放电容量达到168 mAh/g,SC的首次放电容量达到170 mAh/g.同时降低了材料的放电电压平台,改善了材料的电化学性能.  相似文献   

5.
锡基复合氧化物负极材料的研究   总被引:2,自引:1,他引:1  
采用共沉淀法制备了SnFeO2.5和SnPbO2两种锡基复合氧化物粉末.XRD分析表明,这两种锡基复合氧化物在26°~28°处都有波峰,属无定形结构;SEM的形貌观察发现SnFeO2.5颗粒分层紧密堆积、团聚在一起,SnPbO2颗粒为棱柱状、表面光滑.将其分别作为Li+电池负极材料的活性物质,利用恒电流电池测试仪研究它们的电化学性能,发现这两种锡基复合氧化物都有较高的电化学容量.  相似文献   

6.
采用草酸盐沉淀及高温固相反应相结合的方法合成了锂离子电池的活性正极材料Li_aNi_(0.7)Co_(0.3)O_2.XRD、SEM及电化学测试数据表明:该材料结晶及层状结构良好,首次充放电比容量为175.4mAh/g和142.9mAh/g,循环30次后放电比容量仍为136.0mAh/g,比容量损失只有4.8%.  相似文献   

7.
采用熔融态金属锂与高纯硼粉复合制备了锂硼复合材料并应用于固态电解质(Li6.4La3Zr1.4Ta0.6O12, LLZTO)制作对称电池,对比研究了锂硼复合固态对称电池与锂金属固态对称电池的电化学性能。结果表明:锂硼复合固态电池界面阻抗(约6 Ω/cm2)小于金属锂固态电池的界面阻抗(约103 Ω/cm2),说明锂硼复合电极和固态电解质接触良好;在400 μA/cm2的电流密度下进行充放电测试,锂硼复合固态对称电池可以稳定循环250次以上,而金属锂固态电池很快失效;锂硼复合固态对称电池在0.1 mAh保持容量下的临界电流密度达到2 700 μA/cm2,在0.1 mA/cm2电流密度下的面容量可达12 mAh/cm2。研究表明该锂硼复合固态对称电池具有优异的循环性能。  相似文献   

8.
固态锂金属电池相较于传统液态电池,其能量密度更高、安全性更好,具有巨大的应用前景。但聚合物固态电解质离子电导率低、强度低、电化学稳定性差,阻碍了其进一步发展。将丁二腈与聚碳酸丙烯酯通过无溶剂法加以玻璃纤维作为支撑制备了室温下高性能的复合固态电解质。所制备的复合固态电解质在室温下离子电导率达3.06×10?4 S/cm,锂离子迁移数达0.47,电化学窗口最高达4.3 V;其锂金属对称电池在电流为0.1 mA/cm2的条件下,稳定循环超400 h;磷酸铁锂固态锂金属电池0.5 C循环100次的容量保持率为95.9%,展现出良好的循环稳定性。  相似文献   

9.
采用溶胶-凝胶法制备了单斜结构的LiFeBO3/LBO复合材料(C2/c 空间群).通过XRD,SEM,充放电测试、循环伏安、交流阻抗等手段分别对结构、形貌和电化学性能进行了研究.结果表明,与不含LBO的LiFeBO3相比,复合材料具有较高的放电比容量和良好的循环性能,尤其是当复合材料中含有15.1%LBO时,该材料在C/20倍率下获得了194.6 mAh/g的首次放电比容量,100次循环后放电比容量仍维持在137.0 mAh/g.循环伏安和交流阻抗测试结果也表明,LBO含量为15.1%的复合材料中LiFeBO3粒子之间的导电性明显得到改善.  相似文献   

10.
以煤焦油为原料在天然石墨球表面包覆一层中间相炭制备复合炭材料,研究中间相炭、天然石墨球和复合炭材料作为锂离子二次电池炭负极材料的电化学性能,并考察不同温度热处理得到的复合炭材料的电化学性能。研究结果表明:复合炭材料同时具有中间相炭及天然石墨球的优点;随着热处理温度的升高,复合炭材料的充放电容量有所降低,于700℃处理2 h的性能最佳,首次充电容量达378 mA.h/g,首次充放电效率为91.3%。复合炭材料在Li/C扣式电池中的循环性能得到提高,50个循环后容量保持率为96%。  相似文献   

11.
采用浸渍法制备Ti O2负载的锰钒和锰钒铈系列复合氧化物催化剂,并研究金属成分投放量及老化处理对催化剂比表面积和选择性催化还原反应(SCR)催化性能的影响.结果表明:Mn O2和V2O5都会恶化锐钛矿型Ti O2的热稳定性,且Mn O2的恶化作用更强,氧化铈具有稳定锐钛矿型Ti O2晶相结构的作用.Mn O2投放量越高,系列催化剂的低温SCR催化性能越好,但高温SCR催化性能越差,而V2O5投放量对催化活性的影响规律与之相反.Ti O2负载的锰钒系列催化剂经老化处理后,其SCR催化活性大幅降低,而老化处理对锰钒铈系列催化剂的催化性能影响不大.锰钒铈系列催化剂中,V2O5-1.50和V2O5-2.25催化剂在老化实验后都具有较宽的高活性温度窗口.  相似文献   

12.
 采用固相烧结法合成了同时掺杂氟离子和钴离子、具有单斜LiV3O8型结构的锂钒氧化物样品.通过充放电循环实验、循环伏安实验、XRD衍射和热分析对材料的理化性能进行了表征.实验结果表明,理论组成为Li1.38V2.99Co0.0107.98F0.02的样品的首次放电容量为233 mA·h/g,40次循环的放电容量为192 mA·h/g.在充放电过程中,同时掺氟和钴的样品的放电平台电压较高,表现出较好的循环性能.  相似文献   

13.
采用溶胶凝胶-微波法制备LiFePO4/碳纳米管(CNT)复合正极材料.考察不同微波时间和CNT含量对其电化学性能的影响,并通过X射线衍射(XRD)和扫描电子显微镜(SEM)对样品的晶型结构和表面形貌进行表征.结果表明:掺CNT量为2%(质量分数)和微波18 min所得样品有较好的电化学性能;0.1C充放电的首次放电比容量为142 mAh.g-1,第10次循环的比容量为136 mAh.g-1.  相似文献   

14.
金属氧化物负载KF催化剂用于合成DMC   总被引:1,自引:0,他引:1  
研究了金属氧化物负载KF的固体碱催化剂对甲醇与碳酸丙烯酯酯交换合成碳酸二甲酯反应的活性,考察了反应条件的影响。结果表明,KF/ZnO在本反应中表现出高活性,其最佳实验条件为负载KF15g/(100g),反应温度413K。  相似文献   

15.
以空气中稳定的乙酰丙酮钛为钛源,乙二醇为反应介质,采用多元醇工艺制备了聚羟基乙酸钛前驱体微米棒,然后将前驱体热解或水解得到介孔TiO2。500℃热解得到的TiO2由于颗粒烧结,比表面积仅有16m2/g,孔隙率为0.05cm3/g;沸水中水解得到的TiO2比表面积与孔隙率与热解得到的TiO2相比大大提高,分别为240m2/g和0.30cm3/g。最后对锐钛矿介孔TiO2进行电化学性能测试,结果表明水解制备的TiO2由于丰富的介孔结构以及大的比表面积,锂离子扩散路径短,电荷转移极化小,因此倍率性能高于热解制备的TiO2。  相似文献   

16.
In this paper, Li_2FeSi_(0.98)M_(0.02)O_4/C(M = Mg, Zn, Co, Mn, Ni) was synthesized as cathode material for lithium ion battery by solid-state method. The results show that the materials doped with Mg and Zn at the Si-sites have good initial discharge capacity. Then Li_2FeSi_(1-x)M_xO_4/C(M = Mg, Zn; x = 0.01, 0.02, 0.03, 0.05) were also synthesized via solid-state method. It is concluded that Li_2FeSi_(0.99)Mg_(0.01)O_4/C and Li_2FeSi_(0.98)Zn_(0.02)O_4/C have better initial discharge capacity which is 125 mAh/g and 166.2 mAh/g, respectively. The capacity of Li_2Fe_(0.98)Zn_(0.02)SiO_4/C is 157.3 m Ah/g after 10 cycles at 0.1 C, and the capacity retention rate is 94.6%. The Li~+ diffusion coefficient of Li_2FeSi_(0.98)Zn_(0.02)O_4/C is higher than that of pure phase materials by one order of magnitude. The Li_2FeSi_(0.99)Mg_(0.01)O_4/C and Li_2FeSi_(0.98)Zn_(0.02)O_4/C were tested by XRD and SEM. XRD patterns indicate that the crystal structure of Li_2FeSiO_4 is not changed after being doped with metal ion at the Si-site. The SEM image indicates that no obvious agglomeration is detected in these materials. Li_2FeSi_(0.98)Zn_(0.02)O_4/C processes better electrochemical performance analyzed by EDS、XPS and FT-IR spectra. The data prove that Si~(4+) is successfully replaced by Zn~(2+) in the crystal structure of Li_2FeSiO_4.  相似文献   

17.
In order to investigate the anticorrosion performance of the organic coating/metal system, electrochemical impedance spectra (EIS) were measured in the 3.5wt% NaCl solution, the chemical component and the formation of corrosion products scale were analyzed by laser Raman microspectroscopy, and the pattern of the organic coating/metal system was observed by scanning electron microscopy (SEM). The characteristics and the delamination process of the organic coating/metal system were investigated systematically, and the emphases were on the transportation of the corrosive medium and the changes of the coating/metal interface. The results show that the impedance decreases at the initial immersion, then increases at the middle-immersion, and again decreases at last, which is related to the corrosion products scale. The concentration of Cl in the coating, which destroys the corrosion products scale, increases with the immersion time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号