首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备了β-半乳糖苷酶磁性交联酶聚体,优化了制备条件,并对其酶学性质进行了系统研究.实验结果表明,最优的制备条件为,4.2 mg Fe3O4磁性纳米颗粒,20 mg/m L的BSA 2m L,吸附时间为1.5 h,β-半乳糖苷酶酶液50μL,沉淀剂为异丙醇,体积比为1∶1,沉淀时间1h,戊二醛体积分数为0.125%,交联时间1 h,在此条件下得到的β-半乳糖苷酶M-CLEAs酶活保留率为58.67%.扫描电镜观察显示β-半乳糖苷酶磁性交联酶聚体呈多孔结构,比表面积大.与游离酶相比,β-半乳糖苷酶M-CLEAs具有更加宽泛的催化温度和p H范围,同时表现出较好的重复利用性.  相似文献   

2.
β-半乳糖苷酶在食品行业具有重要应用价值,开发兼具多种优良特性的β-半乳糖苷酶是目前研究的重点.本研究对胃肠道微生物宏基因组来源的β-半乳糖苷酶基因galRBM1进行异源表达、纯化及酶学性质研究,结果表明,重组β-半乳糖苷酶的最适pH为7.0,最适温度为50℃,30~50℃耐受4h仍保持85%以上剩余酶活;pH稳定性较好,pH5~10范围内耐受1h仍保持80%以上的相对酶活.Fe~(2+)和Fe~(3+)对该酶酶活有强烈促进作用,Cu~(2+)、Ag~+和Tween-80则表现出不同程度的抑制.该酶耐盐性较好,0~30%NaCl条件下耐受1h相对酶活仍剩余40%以上.  相似文献   

3.
β-半乳糖苷酶是一类非常重要的糖苷水解酶,已被广泛应用于食品工业降低乳制品中的乳糖含量.本文通过单因素实验和L9(34)正交实验,对乳酒隐球酵母变种CK-1产生β-半乳糖苷酶的培养基组成和发酵条件进行了优化.结果表明,在以乳糖2.0%、硫酸亚铁铵2.0%、磷酸二氢钾0.4%、起始pH6.0的培养基中,按接种量8%接种后,于30℃,120 r.min-1培养CK-1菌株2 d,β-半乳糖苷酶活力可达(17.02±0.38)U.mL-1,是优化前(基础发酵培养基酶活力(5.39±0.20)U.mL-1)的3.16倍.通过优化培养条件提高了CK-1菌株的产酶量,为商业化β-半乳糖苷酶的大量生产降低了成本.  相似文献   

4.
利用CODEHOP PCR和Anchor-ligated PCR方法从类芽孢杆菌Paenibacillus sp.K1中克隆得到一个α-半乳糖苷酶基因aga P1,大小为2 190 bp,同源性分析显示,该基因与其他α-半乳糖苷酶基因的序列相似低,是一个新的α-半乳糖苷酶基因。将aga P1在大肠杆菌Origami B(DE3)中表达并纯化获得Aga P1,酶学性质分析显示:以p NPG为底物时,Aga P1最适反应温度为40℃,最适p H 6.5~10,Km值为0.75 mmol/L,最大反应速率Vmax为1.96μmol·min-1·mg-1。同时Fe2+、Mg2+、Ca2+、K+和甘油能使α-半乳糖苷酶酶活提高1~3倍,而Cu2+、Zn2+、Fe3+和还原型谷胱甘肽则抑制该酶的活性。SDS-PAGE检测Aga P1蛋白大小约为80 ku,与理论预测值基本一致;Native-PAGE分析表明正常条件下Aga P1蛋白以二聚体或六聚体形式存在。以上结果显示,Paenibacillus sp.K1产生的α-半乳糖苷酶为一个新的低温α-半乳糖苷酶。  相似文献   

5.
通过水解活性和转糖基活性筛选, 从实验室97株保存菌种中获得1株具有转糖基活性的β-半乳糖苷酶产生菌,克隆并序列分析了该菌株16SrDNA基因片断,GenBank收录号为DQ267829. 综合其形态学特征、生理生化特征及16S rDNA序列同源性分析结果, 将其鉴定为巨大芽孢杆菌(Bacillus megaterium)2-37-4-1. 确定了该菌株β-半乳糖苷酶产酶培养基的碳源为乳糖1%,氮源为蛋白胨0.5%和酵母膏0.5%,培养条件为37℃摇床培养18?h;碳源实验证明,该菌株β 半乳糖苷酶产生为乳糖诱导型.利用薄层层析技术研究了pH值、乳糖底物浓度、反应温度和反应时间对该菌株β-半乳糖苷酶以乳糖为底物转糖基合成低聚半乳糖的影响, 确定最适反应条件为pH7.5、50mmol/L(磷酸缓冲液)配制的40%乳糖溶液, 55℃反应24h.转糖基反应产物高压液相色谱分析其组成为低聚半乳糖25.68%, 双糖(包括乳糖和转移二糖)33.02%, 葡萄糖26.37%和半乳糖14.92%.  相似文献   

6.
从腐牛乳中分离筛选出一产β-半乳糖苷酶(E.C.3.2.1.23)酵母菌菌株(No.47).摇瓶发酵获酵母细胞,利用甲笨-自溶法破碎细胞,抽提的β-半乳糖苷酶通过2次丙酮沉淀,DEAE-纤维素(DE52)柱层析、羟基磷灰石柱层析进行纯化。该酶仅以一种分子形式存在。巯基与酶的活性中心有关。此酶对金属离子敏感,能被多种金属离子及SDS、Urea、EDTA等抑制。纯化的酶固定在戊二醛交联的明胶颗粒上,残活力为14%。固定化酶最适pH为6.6,而自然酶最适pH为6.4;固定化酶与自然酶最适温度均为45℃;固定化酶pH稳定范围为6.8-9.2,自然酶为6.4-9.2,自然酶为6.4—8.0;固定化酶热稳定性优于自然酶;以邻硝基苯酚-β-D-吡喃型半乳糖苷(简称ONPG)为底物,固定化酶表观米氏常数为3.4mmol·dm~(-3),自然酶米氏常数为2.5mmol·dm~(-3)。  相似文献   

7.
为了研究乳克鲁维酵母中β-半乳糖苷酶可能的熔解温度,采用分子动力学模拟的方法,分别对4种不同温度条件下(35、50、65、80 ℃)的β-半乳糖苷酶进行了50 ns的计算模拟,分析了酶的构象变化以及酶活性中心的差异。研究在原子水平揭示了β-半乳糖苷酶的温度耐受等关键信息:35 ℃为最适酶活温度,该温度下的β-半乳糖苷酶的整体构象最稳定;该酶在50 ℃时的原子波动性显著增加,表明此温度可能趋近熔解温度临界值;蛋白在大于65 ℃条件下丧失柔性,说明蛋白已经变性;进一步的构象分析发现80 ℃高温会破坏β-D-半乳吡喃糖(GAL)结合位点微环境。  相似文献   

8.
β-半乳糖苷酶具有将乳糖分解为半乳糖和葡萄糖的能力,也具有把半乳糖聚合成低聚半乳糖的能力。这两种能力在工业生产中具有不同的意义。通过点突变使β-galactosidase[Pyrococcus furiosus DSM 3638]415位天冬酰胺(Asn or N)突变为丝氨酸(Ser or S),突变体构建于毕赤酵母表达质粒载体,并筛选以毕赤酵母为宿主细胞的工程菌种,以此制备β-半乳糖苷酶的突变体酶蛋白。研究发现,该突变体的β-半乳糖苷酶活性在95℃、p H5.5时达到最高酶活,为耐高温乳糖酶,且该突变体水解牛奶的能力较好,可用于低乳糖牛奶及其相关制品加工中。而突变后β-半乳糖苷酶的另一个活性,即产生低聚半乳糖的能力的活性也有所提高,但不够明显。因此该位点突变可用于乳制品的加工,但不能期盼产生更多的半乳糖寡聚体。  相似文献   

9.
1981年我们报导了一株能诱导产生α-半乳糖苷酶的脂肪嗜热芽孢杆菌T59,发现在含有0.5%以上的葡萄糖的牛肉膏培养基上培养时,不但α-半乳糖苷酶的诱导合成受到阻遏,而且细菌的生长也受到抑制.我们通过亚硝基胍对T59的诱变处理,选出了N-34菌株.N-34对葡萄糖仍为敏感.从N-34再进行诱变,获得了一株在含有1%葡萄糖的牛肉膏培养基上能很好地生长的菌株N-3468.在含葡萄糖的牛肉膏培养基上生长时,α-半乳糖苷酶的诱导合成并不受到阻遏.葡萄糖对细菌的生长抑制以及耐糖突变过去未见文献报导.本文对这一现象的本质进行了研究,比较了N-34和N-3468两菌株在形态及生理性质上的异同.  相似文献   

10.
从常现青霉麸曲中抽提的β-半乳糖苷酶(E.C.32。1.23,亦称乳糖酶)粗制品,经两次硫酸铵盐析沉淀和DEAE纤维素柱层析,纯度提高了近55倍,纯化酶的最适反应温度为62~65℃,最适反应pH为4.0。于pH2.2~8.0放置过夜,酶活性基本稳定。以邻硝基苯酚β-半乳糖苷(ONPG)为底物时该酶的K_m为2.06 mmol/L。Cu~(++),Fe~(++)和N-溴代琥珀酰亚胺(NBS)对酶活性有明显的抑制作用,Mn~(++)为该酶的激活剂。  相似文献   

11.
从市售不同品牌的普通酸奶中分离出6株乳杆菌,分别编号为YB1、YB2、YB3、YB4、YB5、YB6。通过镜检、革兰氏染色、过氧化氢酶反应、糖发酵反应等初步鉴定为保加利亚乳杆菌。对其一株菌产β-半乳糖苷酶的条件进行优化研究,采用乳糖进行不同浓度的诱导,结果表明当乳糖浓度为1.00%时的诱导效果较好;IPTG(异丙基-β-D-硫代半乳糖苷)是一种乳糖类似物,也可诱导菌株产生β-半乳糖苷酶,且其终浓度为0.8mM时的诱导效果较好;对两种诱导剂进行诱导效果的比较,表明应用0.8mM的IPTG可达到最佳诱导效果。  相似文献   

12.
以乳清粉为主要成分开发了一套高产β-半乳糖苷酶且廉价的工业培养基配方.首先,考察了乳清粉替代原培养基中碳源(乳糖)和部分氮源的可行性,优化了乳清粉最佳浓度和氮源(酵母膏、蛋白胨)的最佳组合,筛选了利于β-半乳糖苷酶分泌合成的无机盐种类,获得了一套较理想的工业培养基配方:乳清粉60 g/L,酵母膏9 g/L,蛋白胨3 g/L, MnCl2 0.03 g/L, ZnCl2 0.058 g/L, pH 8.0,应用于乳酸克鲁维酵母发酵制备β-半乳糖苷酶,酶活达到33.4 U/mL(摇瓶培养)和77.47 U/mL(发酵罐培养),单位酶活力达到13.74 U/mg生物量,显著优于传统发酵培养基;且乳清粉廉价易得,特别适合作为工业培养基主成分应用于β-半乳糖苷酶的规模制备.  相似文献   

13.
为了开发工业用酶,在前期菌株筛选的基础上,利用Design-Expert软件,通过Plackett-Bru-man设计与响应面法(RSM)相结合的实验统计方法实现对Serratia proteamaculans sp.L 3菌株产冷β-半乳糖苷酶培养基成分的优化.Plackett-Burman设计筛选出3个显著影响因子:K2HPO4,MgSO4和NaCl,应用中心组合设计和响应面分析确定产酶的最优组合为:K2HPO40.15 g·L-1,MgSO40.50 g·L-1,NaCl 0.76 g·L-1,此时预测的最高A420为0.370 4.经过验证实验,结果表示最佳产酶培养基成分条件下,优化后降解ONPG的能力提高了1.1倍.本研究为微生物β-半乳糖苷酶的后续工业化应用提供理论依据.  相似文献   

14.
菌株F3从土壤中筛选得到,具有产生转糖基β-半乳糖苷酶(β-galactosidase) 的特性。根据形态观察及18S rDNA序列分析,菌株F3被鉴定为扩张青霉(Penicillum expansum)。通过单因子试验和正交试验,对菌株F3产生转糖基β-半乳糖苷酶的培养基组成及发酵条件进行了优化。优化后的培养基组成为葡萄糖2%、酵母粉1%、蛋白胨1.5%、氯化钠0.3%。在初始pH 6.0,28?℃培养40?h时,其产酶量为2?245.2?U/L, 比优化前提高约3倍。菌株F3产生的转糖基β 半乳糖苷酶以pH 4.5缓冲液配制的30%乳糖为底物,50?℃反应24?h,低聚半乳糖产量为30.6%,其中80%以上为三糖。
  相似文献   

15.
棉子糖广泛存在于植物界,在甜菜储藏过程中含量逐渐增加。在以甜菜为原料的制糖工业中棉子糖的存在妨碍蔗糖结晶。文献报导用微生物来源的α-半乳糖苷酶处理甜菜糖蜜水解棉子糖,可以提高蔗糖得率和结晶的质量。不少真菌和细菌能产生α-半乳糖苷酶,例如赤色被包霉、红曲霉、杜邦青霉菌、泡盛酒曲霉、大肠杆菌、脂肪嗜热芽孢杆菌、卡尔斯伯酵母菌以及我国黑龙江应用微生物研  相似文献   

16.
从传统乳制品中筛选到2株高产α-半乳糖苷酶的菌株,经菌株形态和生理生化特性鉴定以及16S rRNA基因序列分析,确定为发酵乳酸杆菌和长双歧杆菌,并命名为LB21和KLDS2.0509。同时研究了2株菌在豆乳中的酶活力、产酸性能、棉子糖降解能力和蛋白水解能力。菌株LB21和KLDS2.0509表现出不同的α-半乳糖苷酶活力,其最高酶活力分别为26.8U/mL和31.5U/mL,发酵终点pH分别为5.1和5.0,两者均能有效地降解棉子糖,蛋白水解能力随着发酵时间的增加而增强。  相似文献   

17.
从鲜牛奶中分离到1株产β-galactosidase的细菌,经16S rDNA序列比对鉴定为类芽孢菌Paenibacillus sp. K1。提取该菌株的染色体DNA,以pUC18(lac-)为载体,构建其DNA文库;在含有X-gal的LB平板上筛选该文库,得到6个蓝色菌落;对阳性克隆中插入的DNA片段序列测定,鉴定出1个编码全长为2028bp并携带有组成型启动子的β-半乳糖苷酶基因。将该基因导入大肠杆菌BL21(DE3)中,实现了β-半乳糖苷酶高效表达,其酶活为25.06U/mL,高于原始菌株的4.55U/mL,并进一步用亲和层析将该酶进行了纯化。  相似文献   

18.
酵母编码α-半乳糖苷酶的基因MEL1被扩增并克隆到表达载体pRSET中,重组质粒pRSET-Gal转化至相应的受体菌BL21(DE3))PlysS,阳性克隆经液体培养和IPTG诱导表达,通过SDS-PAGE分析,在50kD处有一目的分子大小的亮带,裂解细菌后经X-α-Gal的显色底物反应,液体变蓝.试验表明:α-半乳糖苷酶基因MEL1在大肠杆菌中得到了表达,糖基化对于维持此酶的生物活性不是必须的。  相似文献   

19.
将实验室克隆得到的E. coli BL21/pET28a-bga B-18重组菌株在IPTG的诱导下进行表达,对其表达的β-半乳糖苷酶性质进行研究.首先,通过离心收取重组菌菌体;其次,通过超声破碎菌体细胞,再用镍柱对重组蛋白质进行亲和层析;最后,收集层析液,再利用紫外分光光度计测定重组β-半乳糖苷酶活性,并研究其酶学性质.结果表明:该酶的最适反应温度为37℃,最适pH值为7.5;在温度30~50℃、pH 6.0~8.0范围内酶稳定性较好; Mg~(2+)、Mn~(2+)为其激活剂,Cu~(2+)为其抑制剂;测得K_m=0.816 mmol/L,V_(max)=45.87 mmol/(L·min).  相似文献   

20.
利用选择性培养基从发霉的豆粕、豆油工厂周围环境中取样并分离纯化获得一株产热稳定性α-半乳糖苷酶耐热真菌,通过形态学和分子生物学鉴定方法初步鉴定该菌株为分枝犁头霉.研究表明该菌株生长的最适温度和pH值是47℃和7.0,所产酶为胞内酶.酶活研究表明粗酶液的最适温度和pH值分别为68℃和7.0,具有较好的热稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号