首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 62 毫秒
1.
针对经验模态分解过程中存在的包络线过冲/欠冲及端点飞翼等问题,通过分析三次样条及Hermhermite多项式插值的特点,在分析一个非平稳时间序列的经验模态分解的过程中,提出使用分段三次Hermite多项式插值,并结合ARMA过程与周期延拓外推信号"特征波"进行端点延拓来改善包络拟合结果.最后,在一个简单的算例中,以距离测度作为2邻近单频信号分离的一种新判据,仿真验证了包络线拟合算法的有效性.  相似文献   

2.
消除EMD端点效应的PSO-SVM方法研究   总被引:2,自引:0,他引:2  
经验模态分解(empirical mode decomposition, 简称EMD)的端点效应使得EMD分解结果产生严重失真, 为了减小分解过程中产生的端点效应, 将支持向量机(SVM)这一智能算法引入EMD, 提出采用SVM模型解决分解中产生的端点效应问题. 通过支持向量机对其原始数据两端进行延拓, 以获得一个或者多个极大值和极小值. 为了使端点处的延拓变得更加合理, 引入粒子群(PSO)智能算法对支持向量机算法参数进行优化, 使其两个端点处的数据延拓得更加准确, 从而使得三次样条曲线在端点处不会发生大的摆动, 实现EMD分解的固有模态函数(IMF)更加准确可靠. 通过对仿真信号的研究表明, 基于PSO-SVM 方法的延拓方法能够很好地抑制了分解的端点效应.  相似文献   

3.
引入EMD把含有多个震荡模式的数据分解为满足一定条件的多个单一震荡模式分量的线性叠加,对震荡模式分量应用非参数的AC算法,通过历史上相似时期的已知延拓进行预测,利用GMDH客观确定权重构建组合预测模型,并运用该模型结合原油期货数据进行实证。结果表明:用EMD方法改进AC预测模型提高了预测的准确性,在此基础上,GMDH的智能化权重的组合预测模型进行预测,结果显示,AC算法的EMD分解GMDH智能化权重组合预测精度更高。  相似文献   

4.
基于EMD的数据驱动模型在径流预测中的应用   总被引:1,自引:0,他引:1  
为提高径流预测的准确性,提出一种经验模态分解EMD(Empirical Mode Decomposition)与数据驱动模型相结合的径流预测方法。该方法运用EMD将汾河上游兰村、汾河水库和上静游三个水文站年径流序列分解为随机分量和趋势分量,分别选择合适模型对各分量进行合理预测,再拟合各分量预测结果得到最终的年径流预测值。结果表明,通过EMD分解,预测效果有明显提高,满足规范要求,计算方法可行。预测结果可为汾河上游防洪抗旱规划,水资源管理提供科学的依据。  相似文献   

5.
增强低信噪比(signal to noise ratio, SNR)下的语音质量是语音识别需要解决的问题。在众多增强方法中,经验模态分解(empirical mode decomposition, EMD)是目前应用最为广泛的一种方法。针对EMD在对语音进行增强时存在端点效应的问题,研究了极值域均值模式分解(extremum field mean mode decomposition, EMMD)方法。该方法改变了EMD只利用信号的极值点信息的单一做法,充分考虑输入信号所有信息,计算信号极值点间所有数据的均值,可以有效解决EMD中的端点效应问题。因此,提出了基于EMMD的语音增强方法,实验结果表明EMMD方法的引入,消除局部数据中隐含的支流分量,避免了EMD方法的端点效应问题,明显提高了带噪语音的SNR,改善了语音的质量。  相似文献   

6.
Aiming at mitigating end effects of empirical mode decomposition (EMD), a new approach motivated by the nonequidistance grey model (NGM) termed as NGM(1,1) is proposed. Other than trapezoid formulas, the cubic Hermite spline is put forward to improve the accuracy of derivative to the accumulated generating operation (AGO) series. Hopefully, it is worth stressing that the proposed NGM(1,1) model is particularly useful for predicting uncertainty data. Qualitative and quantitative comparisons between the proposed approach and other well-known algorithms are carried out through computer simulations on synthetic as well as natural signals. Simulation results demonstrate the proposed method can reduce end effects and improve the decomposition results of EMD.  相似文献   

7.
微动目标特征提取与辨识一直是弹道目标识别的研究热点与难点。针对复杂运动目标微多普勒(micro-Doppler, m-D)曲线交叠耦合导致的微动辨识难点, 提出一种基于曲线趋势估计的分离算法。该算法首先通过骨架提取获得稳定精细的二值化曲线数据, 再基于曲线光滑性和插值法对曲线趋势进行精确估计并分离, 最后利用变分模态分解(variational mode decomposition, VMD)及经验模态分解(empirical mode decomposition, EMD)算法分解每条m-D曲线并计算相应的微动特性。仿真实验表明, 所提算法能够在信噪比大于-15 dB条件下稳定分离m-D曲线, 进而提取目标的微动特性。  相似文献   

8.
针对传统的时频分析方法对海杂波分析有限的问题,提出一种基于经验模态分解(empirical mode decomposition,EMD)能量占比的海面漂浮小目标特征检测方法.首先,采用EMD将接收回波分为独立不同尺度的若干个固有模态(intrinsic mode function,IMF)分量,实现对接收回波的频率从...  相似文献   

9.
A novel satellite fault diagnosis scheme is presented based on the predictive filter and empirical mode composition(EMD).First,the predictive filter is utilized to obtain the fault estimation,which is corrupted by noise.Then the EMD method is introduced to decompose the fault estimation into a finite number of intrinsic mode functions and extract the trend of faults for fault diagnosis.The proposed scheme has the ability of diagnosing both abrupt and incipient faults of the actuator in a satellite attitude control subsystem.A mathematical simulation is given to illustrate the effectiveness of the proposed scheme.  相似文献   

10.
一种基于EMD和ANC技术的自适应降噪方法   总被引:2,自引:0,他引:2  
为了提高分析信号的信噪比,基于经验模态分解和自适应噪声抵消技术,提出了一种新的信号去噪方法。该方法首先对信号进行自适应噪声抵消,然后进行经验模态分解,得到不同尺度上的固有模态函数,再对不同尺度上的固有模态函数进行噪声属性判定,如果不是噪声则选用不同的滤波参数,进行自适应噪声抵消,最后对各尺度上噪声抵消后的信号进行重构,得到去噪后的信号。结果表明,该方法比基于最小均方误差准则的自适应噪声抵消方法更能有效地消除信号中的噪声。  相似文献   

11.
准确的旅游预测对于旅游政策制定当局和游客都具有重要意义,可以帮助资源的合理配置并避免拥堵事件和游客滞留事件的发生.为了提高旅游预测的准确性,本文考虑噪声在预测中的干扰,提出一种基于网络搜索的CLSI-EMD-BP预测模型.该模型首先利用CLSI方法对网络搜索数据进行指数合成,并利用EMD对序列进行噪声处理,将高频噪声从原序列中分离,再利用去噪处理后的网络搜索数据对旅游客流量进行预测.实证分析以九寨沟为例对预测期内未来22周旅游客流量进行预测发现,基于网络搜索的CLSI-EMD-BP预测误差显著低于时间序列、网络搜索和BP神经网络三个基准模型.该结论一方面说明了本文预测模型的改进作用,另一方面也表明了噪声处理在预测中的必要性.  相似文献   

12.
基于Hilbert-Huang变换理论的非线性系统分析   总被引:1,自引:0,他引:1  
介绍了Hilbert-Huang变换(HHT)这一全新的处理非线性、非平稳信号数据的方法,将其用于分析典型的非线性系统-Duffing方程,通过对使用三阶Runge-Kutta法求解而得到的Duffing方程数值解分解后,得到了4个固有模态函数分量和1个残余量,给出了相应的能量-频率-时间分布图-Hilbert谱,并将其边际谱与Fourier谱作了比较。结果表明,此方法具有更好的局部特性分辨以及瞬时频率分解效果,经HHT变换得到的主要固有模态函数分量具有明确的物理意义,体现在Hilbert谱上的系统固有频率存在明显的波内调制机制,分析结果充分保留了系统的非线性特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号