首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
T-cell differentiation in the thymus is thought to involve a progression from the CD4-CD8- phenotype through CD4+CD8+ intermediates to mature CD4+ or CD8+ cells. There is evidence that during this process T cells bearing receptors potentially reactive to 'self' are deleted by a process termed 'negative selection' One example of this process occurs in mice carrying polymorphic Mls antigens, against which a detectable proportion of T cells are autoreactive. These mice show clonal deletion of thymic and peripheral T-cell subsets that express the autoreactive V beta 3 segment of the T-cell antigen receptor, but at most a two-fold depletion of thymic cells at the CD4+CD8+ stage. By contrast, transgenic mice bearing both alpha and beta chain genes encoding autoreactive receptors recognizing other ligands, show severe depletion of CD4+CD8+ thymocytes as well, suggesting that negative selection occurs much earlier. We report here the Mls 2a/3a mediated elimination of T cells expressing a transgene encoded V beta 3-segment, in T-cell receptor alpha/beta and beta-transgenic mice. Severe depletion of CD4+CD8+ thymocytes is seen only in the alpha/beta chain transgenic mice, whereas both strains delete mature V beta 3 bearing CD4+ and CD8+ T cells efficiently. We conclude that severe CD4+CD8+ thymocyte deletion in alpha/beta transgenic mice results from the premature expression of both receptor chains, and does not reflect a difference in the timing or mechanism of negative selection for Mls antigens as against the allo- and MHC class 1-restricted antigens used in the other studies.  相似文献   

2.
D Gay  P Maddon  R Sekaly  M A Talle  M Godfrey  E Long  G Goldstein  L Chess  R Axel  J Kappler 《Nature》1987,328(6131):626-629
Mature T cells segregate phenotypically into one of two classes: those that express the surface glycoprotein CD4, and those that express the glycoprotein CD8. The CD4 molecule is expressed primarily on helper T cells whereas CD8 is found on cytotoxic and suppressor cells. A more stringent association exists, however, between these T-cell subsets and the major histocompatibility complex (MHC) gene products recognized by their T-cell receptors (TCRs). CD8+ lymphocytes interact with targets expressing class I MHC gene products, whereas CD4+ cells interact with class II MHC-bearing targets. To explain this association, it has been proposed that these 'accessory' molecules bind to monomorphic regions of the MHC proteins on the target cell, CD4 to class II and CD8 to class I products. This binding could hold the T cell and its target together, thus improving the probability of the formation of the trimolecular antigen: MHC: TCR complex. Because the TCR on CD4+ cells binds antigen in association with class II MHC, it has been difficult to design experiments to detect the association of CD4 with a class II molecule. To address this issue, we devised a xenogeneic system in which human CD4 complementary DNA was transfected into the murine CD4-, CD8- T-cell hybridoma 3DT-52.5.8, the TCR of which recognizes the murine class I molecule H-2Dd. The murine H-2Dd-bearing target cell line, P815, was cotransfected with human class II HLA-DR alpha, beta and invariant chain cDNAs. Co-culture of the parental T-cell and P815 lines, or of one parental and one transfected line resulted in a low baseline response. In contrast, a substantial increase in response was observed when CD4+ 3DT-52.5.8 cells were co-cultured with HLA-DR+ P815 cells. This result strongly indicates that CD4:HLA-DR binding occurs in this system and that this interaction augments T-cell activation.  相似文献   

3.
New class II-like genes in the murine MHC   总被引:11,自引:0,他引:11  
S G Cho  M Attaya  J J Monaco 《Nature》1991,353(6344):573-576
Major histocompatibility complex (MHC) class I molecules present endogenous antigens to CD8+ (cytotoxic) T cells. MHC class II molecules present primarily exogenously derived antigens to CD4+ T cells. Three new genes (Ma, Mb1 and Mb2) located between the Pb and Ob genes of the murine MHC have properties indicating that they are members of the MHC class II gene family, but they are the most divergent class II members so far identified and are almost as closely related in sequence to class I genes as they are to the known class II genes.  相似文献   

4.
Expression and function of CD4 in a murine T-cell hybridoma   总被引:33,自引:0,他引:33  
The CD4 (T4) antigen was originally described as a phenotypic marker specific for helper T cells, and has recently been shown to be the receptor for the human immunodeficiency virus (HIV). Functional studies using monoclonal antibodies directed at CD4 and major histocompatibility complex (MHC) class II molecules led to the suggestion that CD4 binds to the MHC class II molecules expressed on stimulator cells, enhancing T-cell responsiveness by increasing the avidity of T cell-stimulator cell interaction and/or by transmitting a positive intracellular signal. But recent evidence that antibodies to CD4 inhibit T-cell responsiveness in the absence of any putative ligand for CD4 has been interpreted as suggesting that antibody-mediated inhibition may involve the transmission of a negative signal via the CD4 molecule instead. We have infected a murine T-cell hybridoma that produces interleukin 2 (IL-2) in response to human class II HLA-DR antigens with a retroviral vector containing CD4 cDNA. The resulting CD4-expressing hybridoma cell lines produce 6- to 20-fold more IL-2 in response to HLA-DR antigens than control cell lines. Furthermore, when antigen levels are suboptimal, the response of the cell lines is entirely CD4-dependent. The data presented here clearly demonstrate that CD4 can enhance T-cell responsiveness and may be crucial in the response to suboptimal levels of antigen.  相似文献   

5.
K Saizawa  J Rojo  C A Janeway 《Nature》1987,328(6127):260-263
CD4 is a molecule expressed on the surface of T lymphocytes which recognize foreign protein antigens in the context of class II major histocompatibility complex (MHC) molecules. Recognition of antigen:class II MHC complexes by CD4+ T cells can be inhibited by anti-CD4 (ref. 3). Nevertheless, specific recognition of the antigen:Ia complex is clearly a function of the T-cell receptor, which is composed of CD3 and the variable polypeptides alpha and beta. Thus, it has been proposed that CD4 serves an accessory function in the interaction of CD4+ T cells and Ia-bearing antigen-presenting cells by binding to non-polymorphic portions of class II MHC molecules and stabilizing the cell interaction. Based on our observation that anti-CD4 could inhibit activation of a cloned line of CD4+ T cells by antibodies directed at a particular epitope on the variable region of the T-cell receptor, we have recently proposed that CD4 is actually part of the T-cell antigen recognition complex, physically associated with CD3:alpha:beta. But numerous studies showing that CD3 and CD4 are not stably associated on the T-cell surface would appear to contradict this model. Here we show that anti-T-cell-receptor antibodies can co-modulate expression of the T-cell receptor and CD4, and that the monovalent Fab fragment of such an anti-T-cell-receptor antibody can, in conjunction with bivalent anti-CD4 antibody, generate an activating signal for the T cell. These findings provide further evidence for a physical association of the T-cell receptor complex and CD4.  相似文献   

6.
D Vidovi?  M Rogli?  K McKune  S Guerder  C MacKay  Z Dembi? 《Nature》1989,340(6235):646-650
Distinct T-lymphocyte subsets recognize antigens in conjunction with different classes of major histocompatibility complex (MHC) glycoproteins using the T-cell receptor (TCR), a disulphide-linked heterodimer associated with the CD3 complex on the cell surface. In general, class I and class II MHC products provide a context for the recognition of foreign antigens by CD8+ and CD4+ T cells, respectively. This recognition seems to be largely dependent on alpha beta TCR heterodimers, whereas the function of the second gamma delta TCR, present on a minor subpopulation of cells, is still unknown. In the mouse, the existence of six cell-surface MHC class I products (K, D, L, Qa-1, Qa-2 and Tla) has been firmly established by serological, biochemical and genetic evidence. So far, only the most polymorphic of them, K, D and L ('classical' class I) have been reported as restriction elements for T-cell recognition of foreign antigens. The function of the relatively invariant Qa and Tla molecules remains unknown. We have made a T-helper cell hybridoma clone (DGT3) that recognizes synthetic copolymer poly(Glu50Tyr50) in the context of Qa-1 cell surface product, and has a CD4-CD8- phenotype. Our studies indicate that DGT3 cells express the gamma delta TCR on the cell surface, implicating its role in Qa-1-restricted antigen recognition. This is the first evidence that T cells can recognize foreign antigen in association with self Qa product, confirming that Qa molecules not only topologically, but also functionally, belong to the MHC.  相似文献   

7.
Cell-cell adhesion mediated by CD8 and MHC class I molecules   总被引:30,自引:0,他引:30  
CD4 and CD8 are cell-surface glycoproteins expressed on mutually exclusive subsets of peripheral T cells. T cells that express CD4 have T-cell antigen receptors that are specific for antigens presented by major histocompatibility complex class II molecules, whereas T cells that express CD8 have receptors specific for antigens presented by MHC class I molecules (reviewed in ref. 1). Based on this correlation and on the observation that anti-CD4 and anti-CD8 antibodies inhibit T-cell function, it has been suggested that CD4 and CD8 increase the avidity of T cells for their targets by binding to MHC class II or MHC class I molecules respectively. Also, CD4 and CD8 may become physically associated with the T-cell antigen receptor, forming a higher-affinity complex for antigen and MHC molecules, and could be involved in signal transduction. Cell-cell adhesion dependent CD4 and MHC II molecules has recently been demonstrated. To determine whether CD8 can interact with MHC class I molecules in the absence of the T-cell antigen receptor, we have developed a cell-cell binding assay that measures adhesion of human B-cell lines expressing MHC class I molecules to transfected cells expressing high levels of human CD8. In this system, CD8 and class I molecules mediate cell-cell adhesion, showing that CD8 directly binds to MHC class I molecules.  相似文献   

8.
Antigens presented to CD4+ T cells derive primarily from exogenous proteins that are processed into peptides capable of binding to class II major histocompatibility complex (MHC) molecules in an endocytic compartment. In contrast, antigens presented to CD8+ T cells derive mostly from proteins processed in the cytosol, and peptide loading onto class I MHC molecules in an early exocytic compartment is dependent on a transporter for antigen presentation encoded in the class II MHC region. Endogenous cytosolic antigen can also be presented by class II molecules. Here we show that, unlike class I-restricted recognition of antigen, HLA-DR1-restricted recognition of cytosolic antigen occurs in mutant cells without a transporter for antigen presentation. In contrast, DR1-restricted recognition of a short cytosolic peptide is dependent on such a transporter. Thus helper T-cell epitopes can be generated from cytosolic antigens by several mechanisms, one of which is distinct from the classical class I pathway.  相似文献   

9.
R K?nig  L Y Huang  R N Germain 《Nature》1992,356(6372):796-798
Interactions between major histocompatibility complex (MHC) molecules and the CD4 or CD8 coreceptors have a major role in intrathymic T-cell selection. On mature T cells, each of these two glycoproteins is associated with a class-specific bias in MHC molecule recognition by the T-cell receptor. CD4+ T cells respond to antigen in association with MHC class II molecules and CD8+ T cells respond to antigen in association with MHC class I molecules. Physical interaction between the CD4/MHC class II molecules and CD8/MHC class I molecules has been demonstrated by cell adhesion assay, and a binding site for CD8 on class I has been identified. Here we demonstrate that a region of the MHC class II beta-chain beta 2 domain, structurally analogous to the CD8-binding loop in the MHC class I alpha 3 domain, is critical for function with both mouse and human CD4.  相似文献   

10.
Positive selection of CD4+ thymocytes controlled by MHC class II gene products   总被引:20,自引:0,他引:20  
The mature T-cell antigen receptor repertoire is characterized by lack of reactivity to self-components as well as by preferential reactivity to foreign antigens in the context of polymorphic self-proteins encoded within the major histocompatibility complex. Whereas the former characteristic (referred to as negative selection or tolerance) is associated with intrathymic deletion of T cells expressing T-cell antigen receptor beta-chain variable (V beta) domains, which confer a preferential reactivity to self antigens, the existence of the latter (referred to as positive selection or MHC restriction) has so far only been inferred indirectly from functional studies. We show here that intrathymic deletion of V+beta 6 T cells (reactive with a self-antigen encoded by the Mlsa locus) is controlled by polymorphic MHC class II determinants. Furthermore, in mice lacking expression of Mlsa, the same class II MHC loci control the frequency of occurrence of V+beta 6 cells among mature CD4+ T lymphocytes. These data are direct evidence for positive selection by MHC determinants in the thymus in unmanipulated animals.  相似文献   

11.
U Kalinke  B Arnold  G J H?mmerling 《Nature》1990,348(6302):642-644
The pronounced response by mouse T cells to the major histocompatibility complex (MHC) class I antigens of the same species is characterized by a relatively large fraction of responding cells. Responses to MHC class I allelles of other species are, however, generally much weaker. T lymphocytes are positively selected on thymic MHC antigens, resulting in a T-cell repertoire with strong alloreactivity. This has been explained in terms of a mouse T-cell repertoire that is not efficiently selected for recognition of HLA molecules owing to the absence of HLA in mice. Here we show that mice transgenic for HLA mount a T-cell response against allogeneic HLA that is no better than in normal mice. We decided instead to test whether the mouse accessory molecule Lyt-2 on cytotoxic T lymphocytes could interact efficiently with the alpha 3 domain of HLA. To do this, we replaced the alpha 3 domain of HLA-B27 by a murine alpha 3 domain in a gene construct used to produce transgenic mice, and then used the spleen cells from these mice to stimulate normal mouse T cells. Under these conditions cytotoxic T lymphocytes were generated with the same frequency against xenogeneic HLA-B27 determinants as against allogeneic mouse class I antigens. These findings indicate that the normally weak xeno-MHC response is due to the inefficient interaction of the murine Lyt-2 accessory molecule with HLA class I, and not to limitations of the mouse T-cell repertoire.  相似文献   

12.
M J Irwin  K R Hudson  J D Fraser  N R Gascoigne 《Nature》1992,359(6398):841-843
Superantigens such as the staphylococcal enterotoxins bind to major histocompatibility complex (MHC) class II molecules and activate T cells through a specific interaction between the V beta region of the T-cell antigen receptor (TCR) and the toxin. The TCR beta-chain alone is sufficient to produce the interaction with the enterotoxin-class II complex. Identification of the regions of enterotoxins that interact with TCR has so far proved equivocal because of difficulties in distinguishing between direct effects on T-cell recognition and indirect effects resulting from alteration of binding to class II. For example, amino-terminal truncations of SEB abrogated T-cell stimulation whereas carboxy-terminal truncation of SEA stopped its mitogenic activity. The most comprehensive study to date, accounting for both enterotoxin binding to class II and enterotoxin interactions with the TCR, identified two functionally important regions for SEB binding to TCR. Although the amino-acid sequences of staphylococcal enterotoxins A and E are 82% identical, they activate T cells bearing different V beta elements. We have assayed the binding of cells coated with these enterotoxins to soluble secreted TCR beta-chain protein and find that V beta 3 binds enterotoxin A but not E, whereas V beta 11 binds enterotoxin but not A. To map the amino-acid residues responsible for these different binding specificities, we prepared a series of hybrids between the two staphylococcal enterotoxins. We report that just two amino-acid residues near the carboxy terminus of the enterotoxins are responsible for the discrimination between these molecules by V beta 3 and V beta 11.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
P Kisielow  H S Teh  H Blüthmann  H von Boehmer 《Nature》1988,335(6192):730-733
Thymus-derived lymphocytes (T cells) recognize antigen in the context of class I or class II molecules encoded by the major histocompatibility complex (MHC) by virtue of the heterodimeric alpha beta T-cell receptor (TCR). CD4 and CD8 molecules expressed on the surface of T cells bind to nonpolymorphic portions of class II and class I MHC molecules and assist the TCR in binding and possibly in signalling. The analysis of T-cell development in TCR transgenic mice has shown that the CD4/CD8 phenotype of T cells is determined by the interaction of the alpha beta TCR expressed on immature CD4+8+ thymocytes with polymorphic domains of thymic MHC molecules in the absence of nominal antigen. Here we provide direct evidence that positive selection of antigen-specific, class I MHC-restricted CD4-8+ T cells in the thymus requires the specific interaction of the alpha beta TCR with the restricting class I MHC molecule.  相似文献   

14.
Apolipoprotein-mediated pathways of lipid antigen presentation   总被引:1,自引:0,他引:1  
Peptide antigens are presented to T cells by major histocompatibility complex (MHC) molecules, with endogenous peptides presented by MHC class I and exogenous peptides presented by MHC class II. In contrast to the MHC system, CD1 molecules bind lipid antigens that are presented at the antigen-presenting cell (APC) surface to lipid antigen-reactive T cells. Because CD1 molecules survey endocytic compartments, it is self-evident that they encounter antigens from extracellular sources. However, the mechanisms of exogenous lipid antigen delivery to CD1-antigen-loading compartments are not known. Serum apolipoproteins are mediators of extracellular lipid transport for metabolic needs. Here we define the pathways mediating markedly efficient exogenous lipid antigen delivery by apolipoproteins to achieve T-cell activation. Apolipoprotein E binds lipid antigens and delivers them by receptor-mediated uptake into endosomal compartments containing CD1 in APCs. Apolipoprotein E mediates the presentation of serum-borne lipid antigens and can be secreted by APCs as a mechanism to survey the local environment to capture antigens or to transfer microbial lipids from infected cells to bystander APCs. Thus, the immune system has co-opted a component of lipid metabolism to develop immunological responses to lipid antigens.  相似文献   

15.
J Bill  E Palmer 《Nature》1989,341(6243):649-651
T lymphocytes differentiate in the thymus, where functionally immature, CD4+CD8+ (double positive) thymocytes develop into functionally mature CD4+ helper cells and CD8+ cytotoxic (single positive) T cells. The thymus is the site where self-reactive T cells are negatively selected (clonally deleted) and where T cells with the capacity to recognize foreign antigens in association with self-proteins encoded by the major histocompatibility complex (MHC) are positively selected. The net result of these developmental pathways is a T-cell repertoire that is both self-tolerant and self-restricted. One unresolved issue is the identity of the thymic stromal cells that mediate the negative and positive selection of the T-cell repertoire. Previous work has pointed to a bone-marrow-derived macrophage or dendritic cell as the inducer of tolerance, whereas a radiation-resistant, deoxyguanosine-resistant thymic cell seems to mediate the positive selection of self-MHC restricted T cells. Thymic stromal cells in the cortex interact with the T-cell antigen receptor on thymocytes. Using several strains of transgenic mice that express the class II MHC molecule I-E in specific regions of the thymus, we show directly that the positive selection of T cells is mediated by an I-E-bearing cell in the thymic cortex.  相似文献   

16.
M K Newell  L J Haughn  C R Maroun  M H Julius 《Nature》1990,347(6290):286-289
Effector T cells are restricted to recognizing antigens associated with major histocompatibility complex (MHC) molecules. Specific recognition is mediated by the alpha beta heterodimer of the T-cell receptor (TCR)/CD3 complex, although other membrane components are involved in T-cell antigen recognition and functions. There has been much controversy in this regard over the part played by the CD4 glycoprotein. It is known that expression of CD4 correlates closely with the cell's ability to recognize antigens bound to class II MHC molecules and that CD4 can bind to class II molecules. Also monoclonal antibodies to CD4 can modify signals generated through the TCR/CD3 complex. It has therefore been proposed that CD4 binds to class II molecules, coaggregates with the TCR-CD3 complex and aids the activation of T cells. But given that TCR can itself impart restriction on the cell, it remains unclear whether the contribution of CD4-derived signals to those generated through the TCR alpha beta-CD3 complex is central to this activation. Here we report that when preceded by ligation of CD4, signalling through TCR alpha beta results in T cell unresponsiveness due to the induction of activation dependent cell death by apoptosis. These results imply that CD4 is critically involved in determining the outcome of signals generated through TCR, and could explain why the induction of effector T cells needs to be MHC-restricted.  相似文献   

17.
Differentiation of bone marrow derived precursors into mature T cells takes place in the thymus. During differentiation, T cells develop the receptor repertoire which allows them to recognize antigen in the context of self major histocompatibility complex (MHC) molecules. Mature T helper cells (mostly CD4+ CD8-) recognize antigen in the context of class II MHC molecules, whereas cytotoxic T cells (mostly CD4-CD8+) recognize antigen in the context of class I MHC determinants. Thymic MHC-encoded determinants greatly influence the selection of the T-cell receptor repertoire. In addition to positive selection, a negative selection to eliminate self-reactive T-cell clones is thought to occur in the thymus, but how this 'education' occurs is not well understood. It has been suggested that during differentiation an interaction between the T-cell receptor (TCR) and MHC-encoded determinants occurs, leading to the selection of an MHC-restricted receptor repertoire. In support of this hypothesis, class-II-specific, CD4+ CD8- helper T cells fail to develop in mice neonatally treated with anti-class II monoclonal antibody (mAb). As CD4-CD8+ cells differ from the CD4+ CD8- lineage (in function, MHC-restriction specificity and perhaps site of education) we examined whether interactions with MHC determinants are also necessary for the development of class-I-specific T cells. Here we show that mice chronically treated with anti-class I mAb from birth lack CD4-CD8+ cells and cytotoxic T-cell precursors, indicating that most CD4-CD8+ T cells need interaction with class I MHC molecules during differentiation.  相似文献   

18.
J R Lamb  M Feldmann 《Nature》1984,308(5954):72-74
The induction of T-cell responses involves the recognition of extrinsic antigen in association with antigens of the major histocompatibility complex (MHC), in mice and man, with different T cells recognizing antigen in association with either class I (H-2K/D, HLA-A, B, C) or class II (Ia, HLA-D/DR) MHC antigens. However, the requirement of MHC recognition in the induction of immunological tolerance remains ill defined. With human T helper clones recognizing synthetic peptides of influenza haemagglutinin (HA-1), we have investigated the nature of antigen-induced stimulation, and antigen-induced antigen-specific unresponsiveness, immunological tolerance. Tolerance is not due to cell death, as the cells remain responsive to interleukin-2 and is associated with the loss of T3 antigen from the cell surface. Using monoclonal antibodies to the non-polymorphic regions of human class II antigens to inhibit the induction of T-cell tolerance we report here that induction of tolerance requires the recognition of MHC antigens.  相似文献   

19.
Cytotoxic T lymphocytes (CTL) seem to provide the major line of defence against many viruses. CTL effector functions are mediated primarily by cells carrying the CD8 (Ly-2) antigen (CD8+ cells) and are triggered by interactions of the T-cell receptor with an antigenic complex, often termed 'self plus X', composed of viral determinants in association with class I molecules of the major histocompatibility complex (MHC). The mechanism(s) of induction of virus-specific CTL in vivo is poorly understood, but data from in vitro experiments suggest that their generation is strictly dependent on functions provided by CD4+ helper T cells (also referred to as L3T4+; or TH) that respond to antigens in the context of class II (Ia) MHC determinants. The prevailing opinion that induction of most functions of CD8+ cells requires help provided by CD4+ cells has recently been challenged by the observation that CD8+ cells alone can mediate a variety of responses to alloantigens in vitro and in vivo; however, the possibility that CTL to self plus X could be generated in vivo in the absence of TH cells has not been evaluated. We report here that C57BL/6J (B6) and AKR/J mice, when functionally depleted of CD4+ cells by in vivo treatment with the CD4+-specific rat monoclonal antibody GK1.5 (refs 8-14) responded to ectromelia virus infection by developing an optimal in vivo virus-specific CTL response, and subsequently recovered from the disease (mousepox) that was lethal for similarly infected nude mice (CD4-, CD8-).  相似文献   

20.
J Kaye  S M Hedrick 《Nature》1988,336(6199):580-583
The majority of peripheral T lymphocytes bear cell-surface antigen receptors comprised of a disulphide-linked alpha beta dimer. In an immune response, this receptor endows T cells with specificities for foreign antigenic protein fragments bound to cell surface glycoproteins encoded in the major histocompatibility complex (MHC). At a high frequency (greater than 1%), the same population of T lymphocytes responds to allogeneic MHC glycoproteins, or to differences at other genetic loci termed Mls, in conjunction with MHC. The alpha beta-antigen receptor has been implicated in alloreactivity and Mls reactivity. In fact, many monoclonal T-cell lines recognize a foreign protein fragment bound to self-MHC molecules and, in addition, recognize allogeneic MHC glycoproteins, an Mls-encoded determinant, or both. For at least one T-cell clone, a monoclonal antibody directed against the alpha beta antigen receptor has been shown to block activation induced by either antigen-bound self-MHC or by allogeneic MHC. However, it remains to be demonstrated directly that a single alpha beta receptor can mediate antigen specificity, alloreactivity and Mls reactivity, a prerequisite to understanding the structural basis of these high-frequency cross-reactivities. To address this issue we have performed transfers of receptor chain genes from a multiple-reactive T-cell clone into an unrelated host T lymphocyte. We now demonstrate definitively that the genes encoding a single alpha beta-receptor chain pair can transfer the recognition of self-MHC molecules complexed with fragments of antigen, allogeneic MHC molecules, and an Mls-encoded determinant (presumably in conjunction with MHC). In this case the transfer of antigen specificity and alloreactivity requires a specific alpha beta-receptor chain combination, whereas Mls reactivity can be transferred with the beta-chain gene alone into a recipient expressing a randomly selected alpha-chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号