首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了有效控制并避免交通事故的发生,文章提出了一种基于机器视觉检测前方车辆障碍物距离的方法。利用机器视觉检测到前方车辆可能存在的感兴趣区域,通过边缘特征确定前方车辆的位置。对于采集到的图像进行去噪与增强,通过路面灰度值与基于窗口能量的方法准确定位车辆在图像中的位置。在对摄像机进行预先标定的基础上,通过透视投影的几何关系计算出前方车辆距离的方法。仿真试验结果表明,该方法准确有效。  相似文献   

2.
针对运动车辆在单目视觉下轮廓重构的问题,本文通过特征目标识别的方法解算出无约束运动车辆的运动参数,将无约束运动物体的轮廓重构问题转化成已知约束运动物体的轮廓重构问题,提出了一种基于视频序列的单目视觉下的运动车辆轮廓重构算法.实验结果证明,新算法能够较好地重构出不同大小车辆的3D轮廓,其车辆高度估算值的误差在4%以内  相似文献   

3.
针对基于单目车辆检测的3D包围框检测精确率比较低的问题,提出了一种基于改进的FPN特征融合、ResNet残差单元、全连接层组合而成的新网络方法.在训练阶段,回归车辆的三维尺寸、残差角度和置信度;在推理阶段,检测出所属类别车辆的三维尺寸和局部角度(α).由车辆的3D包围框中心点坐标、车辆的三维尺寸、车辆偏航角(θ)和相机内参矩阵复原绘制出车辆的3D包围框.所提方法在KITTI验证集上进行了实验,与原方法的检测结果相比,改进的方法在容易、适中、困难三个检测等级下提升了车辆3D包围框平均精确率(AP3D)为0.60%,1.37%,1.41%.  相似文献   

4.
为了解决主动安全研究中车辆在行驶过程中与前车的碰撞危险判定问题,该文提出了一种车辆碰撞模型。基于针孔成像原理,分析图像中目标车辆与世界坐标系中实际车辆的映射关系。检测图像中路面消失点与车辆底部的位置,并以其差值作为车辆尺寸特征。分析多帧图像中车辆目标尺寸特征的变化规律,从而分析出车辆行进趋势,并估算出前车同本车的相对碰撞时间。该碰撞模型既为驾驶员反馈了碰撞时间信息,又通过分析加速度避免虚警。与已有模型相比较,该文模型在车辆距离大于30 m时效果不稳定,在距离小于30 m时误差低于5%。实验结果表明该模型具备较强的实用性与准确性。  相似文献   

5.
针对如何准确获取位姿信息来实现移动机器人的避障问题,提出一种改进SIFT特征点匹配的单目车载视觉里程计算法.首先,为了提高特征点匹配的正确率和实时性,结合主成分分析法和平面极线几何约束,改进了传统SIFI匹配算法,其次,建立合理的移动机器人运动数学模型,得到连续帧间图像信息和移动机器人运动位姿变化的转换关系.试验结果表明,误差仅为1.6%,算法运行时间缩短0.022 s.  相似文献   

6.
基于微软Kinect传感器,提出一种改进SURF(speeded up robust features)特征提取算法的单目视觉里程计新方法。用Kinect传感器获得环境彩色和深度图像,再采用基于特征点信息的改进的SURF算法完成彩色图像特征点的提取与匹配,提高匹配的正确率和鲁棒性,随后进行与深度图像的映射,实现三维重建并利用最小平方中值定理估计出机器人的路径信息。实验证明,该方法匹配正确率较SURF算法更高,在动态环境下具有很好的鲁棒性,是一种简单、有效的单目视觉里程计新方法。  相似文献   

7.
针对传统的车辆检测算法无法自适应地完成在复杂场景变化下提取目标相应特征的现象,提出了一种基于深度学习的车辆检测算法,该算法结合了Faster R-CNN开源框架和Loc Net网络算法。首先,利用RPN算法获得图片中的候选区域,以减少检测过程中对每张图片的计算量;然后,进入Fast R-CNN网络,利用该深度网络中的卷积层和池化层,自适应地获得车辆目标的所有特征;最后,进入Loc Net网络,通过输入已经得到的图片候选区域,通过卷积层和池化层,不断计算候选区域边界的概率,达到不断优化候选区域边界,最后得到车辆目标的边界框。使用深度学习卷积神经网络,可以避免人工设计车辆目标特征适用性不广泛的缺点,提升车辆目标检测和定位的准确性。  相似文献   

8.
提出一种基于单目视觉的横穿障碍物检测方法.首先,基于道路平面假设,根据特征点的位置约束以及逆透视投影变换下的性质,提取地面特征点对.其次,采用迭代加权最小二乘法估计自车平移和旋转运动参数.然后,利用估计的运动参数对图像光流进行旋转补偿,并基于道路C 速度空间生成障碍物的候选标记点.最后,对候选标记点进行分组聚类和验证,确定横穿障碍物区域.不同交通场景下的实验结果表明,上述方法能够适用于各种自车运动,有效检测横穿障碍物.  相似文献   

9.
文章改进了针对圆特征的单目视觉测量算法,加入激光测距仪信息,解决了2组解的判定问题;当空间圆半径未知时,基于一幅图像就可以测量出圆的全部位姿信息,与原算法需要控制相机运动,拍摄2幅图像计算相比,更加方便和快捷;建立了具体的计算模型,进行了数值仿真,仿真实验结果表明,改进算法是有效的,可以用于机器人定位、空间交会对接和捕获等方面.  相似文献   

10.
为解决前方车辆识别过程中的实时性问题,提出了一种基于车牌检测的前方车辆识别方法。首先,利用图像中的路面或车道线等细节提取感兴趣区域。其次,利用HSV( Hue-Saturation-Value) 色彩空间转换与矩形图像检测从感兴趣区域中过滤光照变化,阴影和杂乱背景,从而检测出车辆的车牌信息。同时,在初次检测失败的情况下进行二次定位和验证。最后,利用检测出的车牌信息识别前方车辆。该方法在自建与公共数据库视频上进行评估。实验结果表明,识别率超过90% ,并且具有较高的实时性,证明了该方法的有效性。  相似文献   

11.
12.
针对复杂交通场景中动态光照变化、阴影和遮挡等因素带来的影响,提出了一种基于运动目标检测的高效、鲁棒的车辆跟踪方法. 采用自适应背景建模获取动态场景中的运动信息,通过阴影去除获得准确的运动区域,并针对场景中的遮挡问题提出了相应的遮挡检测与处理策略,最后通过区域匹配获得跟踪结果,同时使用Kalman滤波器建立车辆的运动模型,对跟踪结果进行了约束和优化. 实验结果表明,提出的视觉车辆跟踪方法可以在复杂多变的室外场景下有效地解决场景中的阴影和遮挡问题,得到鲁棒的车辆跟踪结果.   相似文献   

13.
14.
随着交通愈加发达,道路愈加拥堵,如何实时准确地获取车辆基本信息以便交通部门及时管理特定路段和路口的车辆显得日益重要.对交通视频中车辆的检测和识别,不仅需要实时检测,还要保证其准确性.针对实际情况中车辆之间的遮挡、光照的变化、阴影、道路旁树枝的晃动、背景中固定对象的移动等因素严重影响检测与识别的精度的问题,提出基于Faster-RCNN(Faster-Regions with CNN features)的车辆实时检测改进算法.首先采用k-means算法对KITTI数据集的目标框进行聚类,得到合适的长宽比,并增加一组尺度(64~2)以适应差异较大的车辆尺寸;然后改进区域提案网络,降低计算量,优化网络结构;最后在训练阶段采用多尺度策略,降低漏检率,提高精确率.实验结果表明:改进后的车辆检测算法的mAP(mean Average Precision)达到了82.20%,检测速率为每张照片耗时0.03875 s,基本能够满足车辆实时检测的需求.  相似文献   

15.
为解决室内监控场景中行人小目标不易检测的问题,提出一种基于图像裁剪的行人小目标检测算法.在固定的单目视觉监控视频数据流中,图像序列中不同帧之间存在相关性,使用斯皮尔曼等级相关系数找出两幅图像间不相关部分并进一步精确验证,运用差异函数对传输的图像进行高频感兴趣区域的提取,再利用图像裁剪剔除冗余部分,最后在单阶段目标检测模...  相似文献   

16.
提出一种在利用单目视觉测算前方障碍物距离和角度的方法。利用计算机视觉理论和方法,探讨仅利用针孔成像原理和几何坐标变换,计算障碍物位置的方法。实验结果表明该方法是有效的。  相似文献   

17.
基于单目视觉的跟驰车辆车距测量方法   总被引:1,自引:0,他引:1  
为了解决结构化道路上跟驰车辆的防追尾碰撞问题,首先在对车辆制动模型进行分析的基础上得到了车辆制动距离的计算公式,进而计算出跟驰车辆与前方车辆之间的安全距离.然后,从针孔模型摄像机成像的基本原理出发,推导出基于图像中车道线消失点的车距测量公式.车距测量结果只与图像中的近视场点到摄像机的实际距离有关,无需对所有的摄像机参数进行标定,从而解决了单目视觉车距测量问题.最后,完成了不同距离处前方车辆的车距测量试验.试验结果表明,该方法的车距测量相对误差小于3%,具备了较高的检测精度,能够满足跟驰车辆防追尾碰撞的应用要求.  相似文献   

18.
基于双特征的前方车辆实时检测   总被引:1,自引:0,他引:1  
提出一种在无先验知识的情况下,综合利用车辆阴影和对称性两种特征进行前方车辆检测的算法.该算法通过检测车底阴影特征生成车辆存在假设,首先,利用大津阈值分割方法(OTSU)得到车辆阴影特征,采用阴影区域融合方法解决阴影边缘的变形问题,得到可能包含车辆的区域;然后,利用车辆对称性特征对感兴趣区域进行验证,并对其中的车辆区域进行准确定位.通过对实际采集的道路图像序列进行测试,结果表明:该算法能够实时、有效地检测出前方车辆.  相似文献   

19.
为了解决智能车安全辅助驾驶系统中前方车辆目标的检测问题,提出了一种基于改进阴影多特征与深度网络学习的车辆检测算法。基于前方车辆与本车存在安全距离,选取道路图像底部几行作为候选道路背景并对其预处理排除干扰,通过差分得到车底阴影增强图像。利用自适应阈值法确定图像灰度分割阈值并对道路二值化图像进行形态学预处理。然后,利用最小外接矩形框选候选车辆目标,结合车底阴影几何位置特征、对称度特征进行滤波生成车辆假设。最后,基于局部二值模式纹理特征和深度学习方法验证车辆假设。实验结果表明:在复杂干扰的多车道环境中,算法可以有效地检测前方车辆目标。  相似文献   

20.
一种基于人脸视觉的驾驶疲劳检测的算法   总被引:1,自引:0,他引:1  
提出了基于人脸视觉技术的驾驶疲劳检测方法.首先利用帧差法检测人脸,然后对脸部进行跟踪.在可靠人脸的基础上,定位眼睛及特征提取,根据疲劳人眼特征和头部状态的疲劳检测来决定是否触发警告.实验证明,可以在自然光情况下,快速实时有效识别出驾驶员疲劳时眼部状态,本算法具有较好鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号