首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解郑州市大气PM_(2.5)中正构烷烃的污染特征及来源,于2014年10月至2015年7月在郑州大学新校区采样点进行大气PM_(2.5)采集.采用气相色谱-质谱联用仪定量分析正构烷烃组分(C8~C40)的质量浓度,利用正构烷烃主峰碳、碳优指数、植物蜡含量以及正定矩阵因子分析(PMF)模型,识别正构烷烃的污染来源和解析污染源贡献率.结果表明:郑州市大气PM_(2.5)中正构烷烃质量浓度季节变化特征明显;秋、冬、春、夏季平均质量浓度分别为272±78、392±203、177±59、89±24 ng/m~3,呈现冬季秋季春季夏季的趋势;郑州市大气PM_(2.5)中正构烷烃主要来自煤炭等化石燃料燃烧和机动车尾气排放.  相似文献   

2.
为了解忻州市大气气溶胶中水溶性离子的特征及来源,分别在非采暖季、采暖季和风沙季对忻州市3个固定采样点大气中PM2.5和PM10样品中的水溶性无机离子浓度进行了定量分析.结果表明,忻州市大气PM2.5和PM10浓度分别为89.97、180.12μg/m3,颗粒物中SO2-4、NO-3、NH+4及Ca2+是其主要离子,其质量浓度总和分别占PM2.5和PM10总质量浓度的24.19%和24.15%.SO2-4、NH+4、Cl-、K+主要分布在细颗粒物中,Ca2+、Mg2+主要集中在粗颗粒物中,Na+与NO-3在粗细颗粒物中比例差别不大;风沙季中Ca2+、Mg2+的百分比大于采暖季与非采暖季,采暖季里Cl-的比例大于其余2季.主成分分析表明,忻州市风沙季中颗粒物水溶性离子的最主要来源是风沙扬尘;采暖季PM2.5中离子的最主要来源是燃煤和二次生成;非采暖季PM2.5中水溶性离子的最主要来源为二次生成.  相似文献   

3.
为了解鞍山市夏季大气颗粒物PM2.5中元素的污染水平和来源,2014年7月2~15日在鞍山市6个站点进行了PM2.5的样品采集,对PM2.5载带的元素进行了浓度特征和富集因子分析,并通过主成分分析确定了鞍山市PM2.5的主要来源.鞍山市夏季PM2.5载带元素浓度主要由Na、Mg、Al、K、Ca、Fe、Zn等7种元素贡献,占总浓度的96.8%以上,Pb的浓度为50.07ng/m3,Cd的浓度为0.91ng/m3,Mn的浓度为16.81ng/m3,Ni的浓度为3.16ng/m3,均未超出GB3095-2012和WHO规定的浓度限值.元素Cr、Ca、Ni、Cu为显著富集或强烈富集水平,Cd、Pb、Zn属于极强富集,表明鞍山市夏季PM2.5污染属于城市交通、燃煤、钢铁冶炼等复合型污染.主成分分析结果显示,鞍山市夏季PM2.5中富集元素的主要人为源包括钢铁冶炼、机动车尾气和建筑扬尘.  相似文献   

4.
为了初步调查南宁市大气中颗粒物PMl0、PM2.5的污染水平 ,于2002年春、夏、秋、冬4季在南宁市的5个典型城市功能区 ,采集了85个样品.结果表明 ,南宁市PMl0、PM2.5 的污染很严重 ,超标率为82.5 %、92.5% ,而且对人体健康危害更大的PM2.5 占PM10 的大部分 ,约为63.5 % ,且重污染区PM2.5 浓度超过轻污染区近一倍 ,应引起公众和相关职能部门的高度重视.  相似文献   

5.
利用南昌市PM_(2.5)浓度数据和地面观测资料数据,通过基于CMAQ模式开发的污染源示踪系统对2017年10月23日至11月16日南昌市PM_(2.5)来源进行模拟分析。结果显示:南昌市2017年秋冬秸秆焚烧旺季期间,PM_(2.5)本地贡献率为42%,周边省市对南昌市PM_(2.5)浓度影响较大的主要为江西省以北的省市,江西省其他地市对南昌市影响最大的为九江;重污染过程期间,南昌市及周边地市秸秆燃烧是PM_(2.5)的重要来源。  相似文献   

6.
济南市PM_(2.5)来源的解析   总被引:2,自引:0,他引:2  
采集济南市环境空气样品和污染源样品,分析其化学成分.采用化学质量平衡(Chemical Mass Balance,CMB)源解析技术,研究探讨济南市环境空气中PM2.5的来源.结果表明:对济南市有明显贡献的颗粒物源类是煤烟尘、机动车尾气尘、土壤尘、扬尘、建筑尘、钢铁尘、硫酸盐和硝酸盐等,并且城市区域尘大于外来尘的贡献,各源类PM2.5贡献值和分担率的季节变化较明显.  相似文献   

7.
于2009年10月至2010年8月间采集郑州市大气颗粒物PM2.5与PM10样品,对其质量浓度及水溶性离子进行分析研究.结果表明:PM2.5在秋、冬、春、夏四季的质量浓度的平均值分别为134.9、121.6、77.9和102.0μg/m3,PM10在秋、冬、春、夏四季的质量浓度的平均值分别为193.2、184.0、140.9和140.5μg/m3,日均值超标率分别达77.8%和59%.PM2.5和PM10质量浓度呈现很好的相关性,春季粗粒子在PM10中的比例相对较高,而秋、冬和夏季细粒子是PM10的主要组成部分.主要的水溶性离子是SO2-4、NO-3和NH+4,大部分以(NH4)2SO4和NH4NO3形式存在;NO-3和SO2-4质量比小于1,说明采样期间郑州市大气以固定排放源污染为主.  相似文献   

8.
随着我国社会经济的快速发展,大气颗粒物污染逐渐成为影响我国城市居民健康的重要危险因素.以流行病学各项研究成果为基础,参考浓度选取环境空气质量标准(GB3095-2012)的二级浓度限值作为标准,利用泊松回归比例危险模型定量评价可归因于PM_(10)和PM_(2.5)污染的居民健康效应,并结合各健康终端的单位经济价值,采用环境价值评估方法估算相关的健康经济损失.结果表明,目前大气颗粒物污染已对京津冀地区的居民带来了较大的健康危害和经济损失:PM_(10)污染所造成的健康经济损失总额为1 399.3(1 237.1-1 553.1)亿元,相当于2013年该地区生产总值的2.26%(1.99%-_(2.5)0%),PM_(2.5)污染引起的健康经济损失总量达1 342.9(1 068.5-1 598.2)亿元,占2013年该地区生产总值的2.16%(1.72%-_(2.5)8%),其中慢性支气管炎与早逝是健康损失的主要来源.研究结果可为基于健康效应的大气颗粒物污染控制政策的制定提供一定的参考依据,对控制大气污染、保护人民群众身体健康具有重要意义.  相似文献   

9.
为了解太原市PM10和PM2.5中重金属污染状况,采集了太原市春季环境空气中可吸入颗粒物(PM10)和细颗粒物(PM2.5)样品,利用等离子体发射光谱仪对样品中As和8种重金属(Mn,Cu,Zn,Pb,Cr,Ni,Co,Cd)的含量进行测定,并对As和重金属健康风险进行评价。结果显示:太原市PM10和PM2.5中均以Zn的质量浓度最大,分别为369.08ng/m3和271.74ng/m3;As的质量浓度相对较小,分别为3.41ng/m3和2.33ng/m3;各点位As、Cu、Zn、Pb、Cr和Cd元素主要显含在PM2.5中。PM10和PM2.5通过呼吸吸入途径产生的成人非致癌风险和致癌风险为儿童的3.98~4.00倍;非致癌风险总和(Hi)低于人体可接受的水平,不具有非致癌风险;PM2.5和PM10的致癌风险介于人体可接受范围,不具有致癌风险。各点位As和重金属在PM2.5和PM10中的非致癌风险比值PHi小于1;1号、3号点位致癌风险比值QR大于1,且对人体健康危害最严重的为可吸入颗粒物PM10,需引起高度重视。  相似文献   

10.
人们每天2/3以上的时间在室内度过,室内空气中可吸入颗粒物对人体健康的影响越来越受到国内外研究人员的广泛关注.在我国,虽然人们对大气中细粒子的研究比较系统、深入,然而对室内环境中可吸入颗粒物的研究、报道却很少.作者在北京市的海淀区、朝阳区、丰台区和昌平区选择了19个家庭,分别对其厨房、客厅和卧室的室内空气中TSP,PM10,PM2.5和PM1的浓度进行了测定,并且对室内空气中粉尘含量的影响因素进行了分析和探讨.  相似文献   

11.
长江三角洲在经济高速发展的同时,经历了较为严重的大气污染,受到了越来越多的关注.本研究于2009年4月(代表春季)、7月(代表夏季)和10月(代表秋季)在临安区域本底观测站使用低流量大气颗粒物采样器(FRM Omni sampler,BGI Inc.,USA)同步采集了PM_(2.5)和PM_(1.0)样品,并用离子色谱(IC)分析了样品中的水溶性无机离子(阴离子:F~-,Cl~-,NO_3~-,SO_4~(2-);阳离子:Na~+,NH_4~+,K~+,Mg~(2+),Ca~(2+)).结果表明:临安区域本底站PM_(2.5)和PM_(1.0)中水溶性无机离子总浓度夏季最低.NH_4~+、SO_4~(2-)和NO3-是最主要的无机离子,在PM_(2.5)中占水溶性无机离子总浓度的比值分别为78%(春季),85%(夏季)和80%(秋季),在PM_(1.0)中占水溶性无机离子总浓度的比值分别为78%(春季),83%(夏季),79%(秋季).NH_4~+和SO_4~(2-)的摩尔比均2,表明SO_4~(2-)完全被NH_4~+中和,可能主要以(NH4)_2SO_4的形态存在.PM_(2.5)和PM_(1.0)中NO_3~-/SO_4~(2-)质量比的变化范围分别为0.31~0.84和0.44~0.63,说明临安市以固定源污染为主.  相似文献   

12.
以太原市典型区域2016年春季环境空气中的PM_(2.5)为研究对象,利用单颗粒气溶胶质谱仪(SPAMS)分析其组成分类和污染特征,并定量解析了春季出现的两次污染过程的源贡献率。结果显示:2016年春季环境空气PM_(2.5)主要由有机碳、元素碳、混合碳、左旋葡聚糖、高分子有机碳、矿物质、富钾和重金属颗粒组成,以有机碳和元素碳颗粒最多;第一次污染过程主要受燃煤烟尘和机动车尾气排放的影响,二者的贡献率之和介于64.1%~78.6%,但扬尘和生物质燃烧排放也不可忽视;第二次污染过程主要受机动车尾气排放的影响,其贡献率最高达73.7%,煤烟尘的贡献率相对第一次污染过程的较小,但二者的贡献率之和最高达83%。  相似文献   

13.
目的研究宝鸡市城区采暖期和非采暖期PM10、PM2.5的质量浓度变化以及比例关系,为宝鸡的雾霾治理提供技术支撑。方法在宝鸡市环境监测中心站院子设点对PM10、PM2.5分别进行采暖期和非采暖期2个时段对比监测,结合气象条件进行分析,总结规律。结果在一般气象条件下PM2.5、PM10质量浓度采暖期高于非采暖期,昼间大于夜间,但细粒子在大气中漂浮时间长,昼夜变化幅度小于可吸入颗粒物。两种颗粒物浓度受气象条件影响较大,阴天浓度明显大于晴天。结论总结了不同时段PM10、PM2.5质量浓度和二者比例关系,为以后的研究和环境管理提供参考。  相似文献   

14.
针对2019年1月2—12日太原市发生的一次PM_(2.5)重污染过程,利用单颗粒气溶胶质谱仪(SPAMS)分析了PM_(2.5)的化学组成,根据太原市PM_(2.5)源谱库对主要成分进行了来源解析,并结合激光雷达监测综合分析了此次重污染过程的成因。监测结果显示,此次重污染过程中PM_(2.5)浓度超标严重,最高日均质量浓度达298μg·m~(-3),超标2.97倍;重污染期间硝酸盐、硫酸盐和有机碳是PM_(2.5)的主要组分,分别占22.32%、21.71%和18.10%;在线源解析结果显示,污染过程中主要以燃煤源、机动车尾气和工业工艺源为主,分别占30.11%、22.78%和18.42%;激光雷达及气象数据分析表明,此次重污染是受高湿静稳、逆温、边界层高度低等不利气象条件影响,加之区域污染传输和本地污染积累而引起空气质量的恶化。  相似文献   

15.
以重庆市沙坪坝区国控空气自动监测点为例,研究了细颗粒物(PM_(2.5))和可吸入颗粒物(PM_(10))污染现状和相关性.结果表明:颗粒物,尤其是细颗粒物(PM_(2.5)),是影响城市环境空气质量的主要污染因子,尤其是在春、冬季节易导致污染天气.大气扩散条件不佳,颗粒物质量浓度越高,细颗粒物(PM_(2.5))在可吸入颗粒物(PM_(10))中的比重也越高.细颗粒物(PM_(2.5))和可吸入颗粒物(PM_(10))具有较好的统计相关性,两者可能具有同源性,在环境空气污染中的变化规律相似,有可能遵循相同的迁移转化规律,可以进行协同治理.  相似文献   

16.
为研究郑州市PM_(10)和PM_(2.5)中多环芳烃(PAHs)的污染特征、来源及对健康的影响,于2013年4—12月在郑州大学采样点同步采集大气中的PM10和PM_(2.5).利用气相色谱-质谱联用仪对16种优先控制的PAHs进行定量分析,在此基础上运用Ba P毒性当量法对PAHs进行健康风险评估,并采用比值特征法揭示PAHs的可能来源.结果表明:郑州市大气颗粒物PM_(10)和PM_(2.5)中PAHs的单体质量浓度随季节变化特征明显,基本上都呈现冬季秋季春季夏季的趋势,其中4~6环化合物是PAHs的主要成分.郑州市四季大气颗粒物Ba P质量浓度均超过国家空气质量标准限制,存在潜在健康风险.经过比值特征法分析得出,郑州市大气颗粒物PM_(10)和PM_(2.5)中PAHs主要来自燃煤源、石油化工源、生物质燃烧源和机动车尾气源.  相似文献   

17.
空气颗粒物是影响城市空气质量的首要污染物,城市PM_(2.5)的主要来源是由人类生产活动产生的。通过采集长治市4个点位的PM_(2.5)样品,分析了PM_(2.5)中18种元素、9种离子和3种碳的组分,并采用CMB受体模型对长治市PM_(2.5)来源进行了解析,为颗粒物污染的控制提供科学依据。  相似文献   

18.
含氮化合物是大气细颗粒物(PM_(2.5))的重要组分,其中含氮有机物是含氮组分的重要存在形式,对陆地和水生生态系统影响较大.于2015年4月、7月和10月分别采集了金华市3个具有代表性站点的PM_(2.5)样品,分析了其中水溶性有机氮(water-soluble organic nitrogen,WSON)的质量浓度分布及季节变化特征.结果表明:金华市PM2.5中WSON质量浓度范围为0.06~6.90μg/m~3,平均1.90μg/m~3,对水溶性总氮(water-soluble total nitrogen,WSTN)的平均贡献率为31%.WSON的质量浓度分布具有明显的季节变化特征:秋季较高,夏季较低,而在夏季WSON对WSTN的贡献率最高.金华市PM_(2.5)中WSON的主要来源可能是含氮前体物在大气中的二次转化以及生物质燃烧活动.  相似文献   

19.
为探究四川省21个市州PM_(2.5)污染的空间分布,有效地利用数据、减少信息损失,将各市州的地理距离与经济变量相关性相结合,构建地理-经济变动空间权重矩阵来刻画各市州之间的相互影响程度,并采用一种改进的Moran’s I指数分析四川省PM_(2.5)污染的空间分布情况,绘制Moran散点图、局部Moran’s I指数集聚图等将PM_(2.5)污染直观地呈现.结果表明:从整体看,四川省PM_(2.5)污染呈现空间正相关性,高污染地区与高污染地区聚集;从局部看,成都平原城市群、川南城市群和少部分川东北城市群的城市PM_(2.5)污染情况较严重,且呈现空间聚集状态,而在攀西城市群、3个少数民族自治州以及少部分川东北城市群的城市自身的PM_(2.5)污染较轻,但周围城市污染较为严重,呈现PM_(2.5)污染空间负相关性.  相似文献   

20.
为研究太原市及周边采暖季PM_(2.5)中重金属的污染特征及来源,于2018年1月采集太原市及榆次大学城大气PM_(2.5)样品,利用等离子体质谱仪测定其中10种重金属元素,使用富集因子法和聚类分析法明确其来源,结合HYSPLIT后向轨迹模型分析两个区域的空间传输过程。结果表明,锌、铅和锰为太原市和榆次大学城采暖季PM_(2.5)中重金属质量浓度最高的3种元素,分别占10种元素总浓度的77.80%和89.06%.铜、锌、砷、镉和铅在太原市和榆次大学城PM_(2.5)中富集水平为中度以上,主要受人为源影响。通过聚类分析发现,太原市和榆次大学城采暖季PM_(2.5)中重金属的主要污染源为燃煤源。太原市和榆次大学城受来自于西北方向的长距离传输气流影响而形成的扬尘是太原市和榆次大学城PM_(2.5)中10种重金属的自然源之一。同年采暖季中,12月为PM_(2.5)中重金属质量浓度最高的月份。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号