首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L A Witters  C A Vater  G E Lienhard 《Nature》1985,315(6022):777-778
The Ca2+- and phospholipid-dependent protein kinase (protein kinase C) is present in many mammalian tissues, and its important physiological protein substrates are only now beginning to be identified. A useful advance in identifying these intracellular substrates has been the recognition that the kinase is the receptor for phorbol esters, which stimulate phosphotransferase activity. Phorbol ester-induced changes in protein phosphorylation in intact cells may thus be taken, in part, as a probable indication of protein kinase C activation. The many cellular effects of phorbol esters include the stimulation of glucose uptake, although the response of glucose uptake to phorbol esters appears to be complex, apparently varying in response time and requirement for protein synthesis. Such observations prompted us to explore one possible explanation for the alteration of glucose uptake, namely, phosphorylation of the glucose transporter by protein kinase C. We report here that incubation of purified human erythrocyte glucose transporter with rat brain protein kinase C results in the phosphorylation of a protein of relative molecular mass (Mr) 50,000-60,000 which has subsequently been identified as the glucose transporter by specific immunoprecipitation with a monoclonal antibody. Immunoprecipitation of membrane proteins from 32P-labelled human erythrocytes revealed a phorbol ester-stimulated phosphorylation of the transporter. This covalent modification of the glucose transporter may thus, in part, underlie the ability of phorbol esters and certain hormones to stimulate glucose uptake.  相似文献   

2.
The effective use of targeted therapy is highly dependent on the identification of responder patient populations. Loss of FBW7, which encodes a tumour-suppressor protein, is frequently found in various types of human cancer, including breast cancer, colon cancer and T-cell acute lymphoblastic leukaemia (T-ALL). In line with these genomic data, engineered deletion of Fbw7 in mouse T cells results in T-ALL, validating FBW7 as a T-ALL tumour suppressor. Determining the precise molecular mechanisms by which FBW7 exerts antitumour activity is an area of intensive investigation. These mechanisms are thought to relate in part to FBW7-mediated destruction of key proteins relevant to cancer, including Jun, Myc, cyclin E and notch 1 (ref. 9), all of which have oncoprotein activity and are overexpressed in various human cancers, including leukaemia. In addition to accelerating cell growth, overexpression of Jun, Myc or notch 1 can also induce programmed cell death. Thus, considerable uncertainty surrounds how FBW7-deficient cells evade cell death in the setting of upregulated Jun, Myc and/or notch 1. Here we show that the E3 ubiquitin ligase SCF(FBW7) (a SKP1-cullin-1-F-box complex that contains FBW7 as the F-box protein) governs cellular apoptosis by targeting MCL1, a pro-survival BCL2 family member, for ubiquitylation and destruction in a manner that depends on phosphorylation by glycogen synthase kinase 3. Human T-ALL cell lines showed a close relationship between FBW7 loss and MCL1 overexpression. Correspondingly, T-ALL cell lines with defective FBW7 are particularly sensitive to the multi-kinase inhibitor sorafenib but resistant to the BCL2 antagonist ABT-737. On the genetic level, FBW7 reconstitution or MCL1 depletion restores sensitivity to ABT-737, establishing MCL1 as a therapeutically relevant bypass survival mechanism that enables FBW7-deficient cells to evade apoptosis. Therefore, our work provides insight into the molecular mechanism of direct tumour suppression by FBW7 and has implications for the targeted treatment of patients with FBW7-deficient T-ALL.  相似文献   

3.
Y Ben-Neriah  A R Bauskin 《Nature》1988,333(6174):672-676
Tyrosine-specific phosphorylation of proteins is a key to the control of diverse pathways leading to cell growth and differentiation. The protein-tyrosine kinases described to date are either transmembrane proteins having an extracellular ligand binding domain or cytoplasmic proteins related to the v-src oncogene. Most of these proteins are expressed in a wide variety of cells and tissues; few are tissue-specific. Previous studies have suggested that lymphokines could mediate haematopoietic cell survival through their action on glucose transport, regulated in some cells through the protein-tyrosine kinase activity of the insulin receptor. We have investigated the possibility that insulin receptor-like genes are expressed specifically in haematopoietic cells. Using the insulin receptor-related avian sarcoma oncogene v-ros as a probe, we have isolated and characterized the complementary DNA of a novel gene, ltk (leukocyte tyrosine kinase). The ltk gene is expressed mainly in leukocytes, is related to several tyrosine kinase receptor genes of the insulin receptor family and has unique structural properties: it apparently encodes a transmembrane protein devoid of an extracellular domain. Two candidate ltk proteins have been identified with antibodies in the mouse thymus, and have properties indicating that they are integral membrane proteins. These features suggest that ltk could be a signal transduction subunit for one or several of the haematopoietic receptors.  相似文献   

4.
Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis.   总被引:22,自引:0,他引:22  
R Agami  G Blandino  M Oren  Y Shaul 《Nature》1999,399(6738):809-813
c-Abl, a non-receptor tyrosine kinase, is activated by agents that damage DNA. This activation results in either arrest of the cell cycle in phase G1 or apoptotic cell death, both of which are dependent on the kinase activity of c-Abl. p73, a member of the p53 family of tumour-suppressor proteins, can also induce apoptosis. Here we show that the apoptotic activity of p73alpha requires the presence of functional, kinase-competent c-Abl. Furthermore, p73 and c-Abl can associate with each other, andthis binding is mediated by a PxxP motif in p73 and the SH3 domain of c-Abl. We find that p73 is a substrate of the c-Abl kinase and that the ability of c-Abl to phosphorylate p73 is markedly increased by gamma-irradiation. Moreover, p73 is phosphorylated in vivo in response to ionizing radiation. These findings define a pro-apoptotic signalling pathway involving p73 and c-Abl.  相似文献   

5.
在缺氧或呼吸链抑制剂存在条件下,细胞的呼吸链受到抑制,线粒体的功能受到直接干扰,细胞色素C通过线粒体的外膜特异性通道进入细胞浆内,启动了procaspase-3等一系列凋亡因子,细胞发生与线粒体相关的凋亡。另一方面,因线粒体的功能被抑制,细胞内的钙离子浓度升高,calpain被激活并裂解细胞膜蛋白及细胞内的生物化学分子,促进了细胞凋亡的发生。鱼藤酮作为线粒体呼吸链complexI的抑制剂可导致细胞凋亡,其凋亡途径不仅与caspase介导的机制有关,还有可能与calpain有关。  相似文献   

6.
Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis.   总被引:74,自引:0,他引:74  
X M Yin  K Wang  A Gross  Y Zhao  S Zinkel  B Klocke  K A Roth  S J Korsmeyer 《Nature》1999,400(6747):886-891
The protein Bid is a participant in the pathway that leads to cell death (apoptosis), mediating the release of cytochrome c from mitochondria in response to signals from 'death' receptors known as TNFR1/Fas on the cell surface. It is a member of the proapoptotic Bcd-2 family and is activated as a result of its cleavage by caspase 8, one of a family of proteolytic cell-death proteins. To investigate the role of Bid in vivo, we have generated mice deficient for Bid. We find that when these mice are injected with an antibody directed against Fas, they nearly all survive, whereas wild-type mice die from hepatocellular apoptosis and haemorrhagic necrosis. About half of the Bid-deficient animals had no apparent liver injury and showed no evidence of activation of the effector caspases 3 and 7, although the initiator caspase 8 had been activated. Other Bid-deficient mice survived with only moderate damage: all three caspases (8 and 37) were activated but their cell nuclei were intact and no mitochondrial cytochrome c was released. We also investigated the effects of Bid deficiency in cultured cells treated with anti-Fas antibody (hepatocytes and thymocytes) or with TNFalpha. (fibroblasts). In these Bid-/- cells, mitochondrial dysfunction was delayed, cytochrome c was not released, effector caspase activity was reduced and the cleavage of apoptosis substrates was altered. This loss-of-function model indicates that Bid is a critical substrate in vivo for signalling by death-receptor agonists, which mediates a mitochondrial amplification loop that is essential for the apoptosis of selected cells.  相似文献   

7.
8.
Betschinger J  Mechtler K  Knoblich JA 《Nature》2003,422(6929):326-330
To generate different cell types, some cells can segregate protein determinants into one of their two daughter cells during mitosis. In Drosophila neuroblasts, the Par protein complex localizes apically and directs localization of the cell fate determinants Prospero and Numb and the adaptor proteins Miranda and Pon to the basal cell cortex, to ensure their segregation into the basal daughter cell. The Par protein complex has a conserved function in establishing cell polarity but how it directs proteins to the opposite side is unknown. We show here that a principal function of this complex is to phosphorylate the cytoskeletal protein Lethal (2) giant larvae (Lgl; also known as L(2)gl). Phosphorylation by Drosophila atypical protein kinase C (aPKC), a member of the Par protein complex, releases Lgl from its association with membranes and the actin cytoskeleton. Genetic and biochemical experiments show that Lgl phosphorylation prevents the localization of cell fate determinants to the apical cell cortex. Lgl promotes cortical localization of Miranda, and we propose that phosphorylation of Lgl by aPKC at the apical neuroblast cortex restricts Lgl activity and Miranda localization to the opposite, basal side of the cell.  相似文献   

9.
J Gautier  T Matsukawa  P Nurse  J Maller 《Nature》1989,339(6226):626-629
Genetic studies in the fission yeast Schizosaccharomyces pombe have established that a critical element required for the G2----M-phase transition in the cell cycle is encoded by the cdc2+ gene. The product of this gene is a serine/threonine protein kinase, designated p34cdc, that is highly conserved functionally from yeast to man2 and has a relative molecular mass of 34,000 (34 K). Purified maturation-promoting factor (MPF) is a complex of p34cdc2 and a 45K substrate that appears in late G2 phase and is sufficient to drive cells into mitosis. This factor has been identified in all eukaryotic cells, and in vitro histone H1 is the preferred substrate for phosphorylation. The increase in the activity of H1 kinase in M-phase is associated with a large increase in total cell protein phosphorylation which is believed to be a consequence of MPF activation. We show here that the H1 kinase activity of p34cdc2 oscillates during the cell cycle in Xenopus, and maximal activity correlates with the dephosphorylated state of p34cdc2. Direct inactivation of MPF in vitro is accompanied by phosphorylation of p34cdc2 and reduction of its protein kinase activity.  相似文献   

10.
The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response   总被引:11,自引:0,他引:11  
Zheng H  You H  Zhou XZ  Murray SA  Uchida T  Wulf G  Gu L  Tang X  Lu KP  Xiao ZX 《Nature》2002,419(6909):849-853
p53 is activated in response to various genotoxic stresses resulting in cell cycle arrest or apoptosis. It is well documented that DNA damage leads to phosphorylation and activation of p53 (refs 1-3), yet how p53 is activated is still not fully understood. Here we report that DNA damage specifically induces p53 phosphorylation on Ser/Thr-Pro motifs, which facilitates its interaction with Pin1, a member of peptidyl-prolyl isomerase. Furthermore, the interaction of Pin1 with p53 is dependent on the phosphorylation that is induced by DNA damage. Consequently, Pin1 stimulates the DNA-binding activity and transactivation function of p53. The Pin1-mediated p53 activation requires the WW domain, a phosphorylated Ser/Thr-Pro motif interaction module, and the isomerase activity of Pin1. Moreover, Pin1-deficient cells are defective in p53 activation and timely accumulation of p53 protein, and exhibit an impaired checkpoint control in response to DNA damage. Together, these data suggest a mechanism for p53 regulation in cellular response to genotoxic stress.  相似文献   

11.
NUAK1是LKB1的下游激酶之一,可被LKB1磷酸化而激活,但对其在LKB1相关信号通路中的功能仍缺乏了解.本研究发现在HeLa细胞中重建LKB1表达后NUAK1与tuberin蛋白免疫共沉淀,提示在野生型LKB1存在时NUAK1与tuberin可能存在直接相互作用.进一步的激酶活性测定和in vivo蛋白磷酸化实验表明:在HeLa细胞中葡萄糖匾乏条件下,野生型LKB1可显著激活NUAK1的激酶活性;而被激活的NUAK1可明显提高tuberin 的磷酸化水平,使用NUAK1 siRNA pool干扰NUAK1的表达则几乎将tuberin的磷酸化水平降低为零.上述结果表明NUAK1可能介导了LKB1对tuberin磷酸化的调节,进而下调mTOR通路,抑制蛋白质合成与细胞生长增殖.  相似文献   

12.
The stimulation of glucose uptake by insulin in muscle and adipose tissue requires translocation of the GLUT4 glucose transporter protein from intracellular storage sites to the cell surface. Although the cellular dynamics of GLUT4 vesicle trafficking are well described, the signalling pathways that link the insulin receptor to GLUT4 translocation remain poorly understood. Activation of phosphatidylinositol-3-OH kinase (PI(3)K) is required for this trafficking event, but it is not sufficient to produce GLUT4 translocation. We previously described a pathway involving the insulin-stimulated tyrosine phosphorylation of Cbl, which is recruited to the insulin receptor by the adapter protein CAP. On phosphorylation, Cbl is translocated to lipid rafts. Blocking this step completely inhibits the stimulation of GLUT4 translocation by insulin. Here we show that phosphorylated Cbl recruits the CrkII-C3G complex to lipid rafts, where C3G specifically activates the small GTP-binding protein TC10. This process is independent of PI(3)K, but requires the translocation of Cbl, Crk and C3G to the lipid raft. The activation of TC10 is essential for insulin-stimulated glucose uptake and GLUT4 translocation. The TC10 pathway functions in parallel with PI(3)K to stimulate fully GLUT4 translocation in response to insulin.  相似文献   

13.
Resveratrol improves health and survival of mice on a high-calorie diet   总被引:3,自引:0,他引:3  
Resveratrol (3,5,4'-trihydroxystilbene) extends the lifespan of diverse species including Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In these organisms, lifespan extension is dependent on Sir2, a conserved deacetylase proposed to underlie the beneficial effects of caloric restriction. Here we show that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice on a standard diet and significantly increases their survival. Resveratrol produces changes associated with longer lifespan, including increased insulin sensitivity, reduced insulin-like growth factor-1 (IGF-I) levels, increased AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) activity, increased mitochondrial number, and improved motor function. Parametric analysis of gene set enrichment revealed that resveratrol opposed the effects of the high-calorie diet in 144 out of 153 significantly altered pathways. These data show that improving general health in mammals using small molecules is an attainable goal, and point to new approaches for treating obesity-related disorders and diseases of ageing.  相似文献   

14.
Jia J  Tong C  Wang B  Luo L  Jiang J 《Nature》2004,432(7020):1045-1050
The Hedgehog (Hh) family of secreted proteins governs cell growth and patterning in animal development. The Hh signal is transduced by the seven-transmembrane protein Smoothened (Smo); however, the mechanism by which Smo is regulated remains largely unknown. Here we show that protein kinase A (PKA) and casein kinase I (CKI) regulate Smo cell-surface accumulation and activity in response to Hh. Blocking PKA or CKI activity in the Drosophila wing disc prevents Hh-induced Smo accumulation and attenuates pathway activity, whereas increasing PKA activity promotes Smo accumulation and pathway activation. We show that PKA and CKI phosphorylate Smo at several sites, and that phosphorylation-deficient forms of Smo fail to accumulate on the cell surface and are unable to transduce the Hh signal. Conversely, phosphorylation-mimicking Smo variants show constitutive cell-surface expression and signalling activity. Furthermore, we find that the levels of Smo cell-surface expression and activity correlate with its levels of phosphorylation. Our data indicate that Hh induces progressive Smo phosphorylation by PKA and CKI, leading to elevation of Smo cell-surface levels and signalling activity.  相似文献   

15.
16.
J L Guan  D Shalloway 《Nature》1992,358(6388):690-692
Increasing evidence indicates that the integrin family of cell adhesion receptors can transduce biochemical signals from the extracellular matrix to the cell interior to modulate cell growth and differentiation. We have shown that integrin/ligand interactions can trigger tyrosine phosphorylation of a protein of M(r) 120,000 (pp120), so it is possible that signal transduction by integrins might involve activation of intracellular protein tyrosine kinases as an early event in cell binding to the extracellular matrix. Here we report that pp120 is identical to the focal adhesion-associated protein tyrosine kinase pp125FAK (refs 3, 4). We show that tyrosine phosphorylation of this protein is modulated both by cell adhesion and transformation by pp60v-src, and that these changes in phosphorylation are correlated with increased pp125FAK tyrosine kinase activity. A model is proposed to relate these findings to the molecular basis of anchorage-independent growth of transformed cells.  相似文献   

17.
Shaw RJ  Cantley LC 《Nature》2006,441(7092):424-430
All eukaryotic cells coordinate cell growth with the availability of nutrients in their environment. The mTOR protein kinase has emerged as a critical growth-control node, receiving stimulatory signals from Ras and phosphatidylinositol-3-OH kinase (PI(3)K) downstream from growth factors, as well as nutrient inputs in the form of amino-acid, glucose and oxygen availability. Notably, components of the Ras and PI(3)K signalling pathways are mutated in most human cancers. The preponderance of mutations in these interconnected pathways suggests that the loss of growth-control checkpoints and promotion of cell survival in nutrient-limited conditions may be an obligate event in tumorigenesis.  相似文献   

18.
Phosphorylation of c-jun mediated by MAP kinases   总被引:142,自引:0,他引:142  
  相似文献   

19.
20.
为探究桂枝茯苓汤含药血清是否通过调控3-磷酸肌醇激酶(PI3K)、蛋白激酶B(AKT),参与调控子宫内膜癌细胞增殖、上皮-间质转化(EMT)与凋亡,将72只SD大鼠分为健康组、桂枝茯苓汤高剂量组、桂枝茯苓汤中剂量组、桂枝茯苓汤低剂量组和奥沙利铂组,对各组大鼠灌胃相应剂量药物,从大鼠的腹主动脉取血制备含药血清,培养子宫内膜癌HEC-B细胞,分为对照组、含药血清高剂量组、含药血清中剂量组、含药血清低剂量组、奥沙利铂血清组、含药血清高剂量+通路激活剂组,向各组细胞培养基中加入相应血清及试剂.采用四甲基偶氮唑蓝(MTT)法检测各组细胞增殖情况,流式细胞术检测各组细胞凋亡情况,Western Blot法检测EMT相关蛋白E-钙黏蛋白(E-cadherin)、细胞波形蛋白(Vimentin)、N-钙黏蛋白(N-cadherin)表达水平及PI3K/AKT通路相关蛋白磷酸化水平.结果表明:与对照组相比,含药血清高剂量组、含药血清中剂量组、含药血清低剂量组的细胞生存率、Vimentin和N-cadherin蛋白表达量、PI3K和AKT磷酸化程度均显著降低(P<0.05),细胞凋亡率、E-cadh...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号