共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells 总被引:14,自引:0,他引:14
Ca2+-induced Ca2+ release is a general mechanism that most cells use to amplify Ca2+ signals. In heart cells, this mechanism is operated between voltage-gated L-type Ca2+ channels (LCCs) in the plasma membrane and Ca2+ release channels, commonly known as ryanodine receptors, in the sarcoplasmic reticulum. The Ca2+ influx through LCCs traverses a cleft of roughly 12 nm formed by the cell surface and the sarcoplasmic reticulum membrane, and activates adjacent ryanodine receptors to release Ca2+ in the form of Ca2+ sparks. Here we determine the kinetics, fidelity and stoichiometry of coupling between LCCs and ryanodine receptors. We show that the local Ca2+ signal produced by a single opening of an LCC, named a 'Ca2+ sparklet', can trigger about 4-6 ryanodine receptors to generate a Ca2+ spark. The coupling between LCCs and ryanodine receptors is stochastic, as judged by the exponential distribution of the coupling latency. The fraction of sparklets that successfully triggers a spark is less than unity and declines in a use-dependent manner. This optical analysis of single-channel communication affords a powerful means for elucidating Ca2+-signalling mechanisms at the molecular level. 相似文献
3.
Oscillations of intracellular Ca2+ in mammalian cardiac muscle 总被引:2,自引:0,他引:2
Contraction of cardiac muscle depends on a transient rise of intracellular calcium concentration ([Ca2+]i) which is initiated by the action potential. It has, however, also been suggested that [Ca2+]i can fluctuate in the absence of changes in membrane potential. The evidence for this is indirect and comes from observations of (1) fluctuations of contractile force in intact cells, (2) spontaneous cellular movements, and (3) spontaneous contractions in cells which have been skinned to remove the surface membrane. The fluctuations in force are particularly prominent when the cell is Ca2+-loaded, and have been attributed to a Ca2+-induced Ca2+ release from the sarcoplasmic reticulum. In these conditions of Ca2+-loading the normal cardiac contraction is followed by an aftercontraction which has been attributed to the synchronization of the fluctuations. The rise of [Ca2+]i which is thought to underlie the aftercontraction also produces a transient inward current. This current, which probably results from a Ca2+-activated nonspecific cation conductance, has been implicated in the genesis of various cardiac arrhythmias. However, despite the potential importance of such fluctuations of [Ca2+]i their existence has, so far, only been inferred from tension measurements. Here we present direct measurements of such oscillations of [Ca2+]i. 相似文献
4.
Single Ca2+-activated nonselective cation channels in neuroblastoma 总被引:27,自引:0,他引:27
5.
Acute modulation of P/Q-type (alpha1A) calcium channels by neuronal activity-dependent changes in intracellular Ca2+ concentration may contribute to short-term synaptic plasticity, potentially enriching the neurocomputational capabilities of the brain. An unconventional mechanism for such channel modulation has been proposed in which calmodulin (CaM) may exert two opposing effects on individual channels, initially promoting ('facilitation') and then inhibiting ('inactivation') channel opening. Here we report that such dual regulation arises from surprising Ca2+-transduction capabilities of CaM. First, although facilitation and inactivation are two competing processes, both require Ca2+-CaM binding to a single 'IQ-like' domain on the carboxy tail of alpha1A; a previously identified 'CBD' CaM-binding site has no detectable role. Second, expression of a CaM mutant with impairment of all four of its Ca2+-binding sites (CaM1234) eliminates both forms of modulation. This result confirms that CaM is the Ca2+ sensor for channel regulation, and indicates that CaM may associate with the channel even before local Ca2+ concentration rises. Finally, the bifunctional capability of CaM arises from bifurcation of Ca2+ signalling by the lobes of CaM: Ca2+ binding to the amino-terminal lobe selectively initiates channel inactivation, whereas Ca2+ sensing by the carboxy-terminal lobe induces facilitation. Such lobe-specific detection provides a compact means to decode local Ca2+ signals in two ways, and to separately initiate distinct actions on a single molecular complex. 相似文献
6.
Ahluwalia J Tinker A Clapp LH Duchen MR Abramov AY Pope S Nobles M Segal AW 《Nature》2004,427(6977):853-858
Neutrophil leukocytes have a pivotal function in innate immunity. Dogma dictates that the lethal blow is delivered to microbes by reactive oxygen species (ROS) and halogens, products of the NADPH oxidase, whose impairment causes immunodeficiency. However, recent evidence indicates that the microbes might be killed by proteases, activated by the oxidase through the generation of a hypertonic, K+-rich and alkaline environment in the phagocytic vacuole. Here we show that K+ crosses the membrane through large-conductance Ca2+-activated K+ (BK(Ca)) channels. Specific inhibitors of these channels, iberiotoxin and paxilline, blocked oxidase-induced 86Rb+ fluxes and alkalinization of the phagocytic vacuole, whereas NS1619, a BK(Ca) channel opener, enhanced both. Characteristic outwardly rectifying K+ currents, reversibly inhibited by iberiotoxin, were demonstrated in neutrophils and eosinophils and the expression of the alpha-subunit of the BK channel was confirmed by western blotting. The channels were opened by the combination of membrane depolarization and elevated Ca2+ concentration, both consequences of oxidase activity. Remarkably, microbial killing and digestion were abolished when the BK(Ca) channel was blocked, revealing an essential and unexpected function for this K+ channel in the microbicidal process. 相似文献
7.
以大鼠胰腺β细胞和INS-1β细胞系为研究对象,采用显微荧光测钙技术,研究了胞外ATP对胞内Ca^2+信号的影响,初步探讨了其作用机制.实验表明:胞外ATP能够分别使大鼠胰腺β细胞和INS-1细胞内的游离Ca^2+浓度显著升高,但2种细胞的钙信号来源不同.在大鼠胰腺β细胞中,胞外ATP主要通过动员胞内钙库释放而引起胞浆内Ca^2+浓度显著增高;而在INS-1细胞内,胞外ATP主要通过引起胞外Ca^2+内流而引起胞浆内Ca^2+浓度增加. 相似文献
8.
Missler M Zhang W Rohlmann A Kattenstroth G Hammer RE Gottmann K Südhof TC 《Nature》2003,423(6943):939-948
Synapses are specialized intercellular junctions in which cell adhesion molecules connect the presynaptic machinery for neurotransmitter release to the postsynaptic machinery for receptor signalling. Neurotransmitter release requires the presynaptic co-assembly of Ca2+ channels with the secretory apparatus, but little is known about how synaptic components are organized. Alpha-neurexins, a family of >1,000 presynaptic cell-surface proteins encoded by three genes, link the pre- and postsynaptic compartments of synapses by binding extracellularly to postsynaptic cell adhesion molecules and intracellularly to presynaptic PDZ domain proteins. Using triple-knockout mice, we show that alpha-neurexins are not required for synapse formation, but are essential for Ca2+-triggered neurotransmitter release. Neurotransmitter release is impaired because synaptic Ca2+ channel function is markedly reduced, although the number of cell-surface Ca2+ channels appears normal. These data suggest that alpha-neurexins organize presynaptic terminals by functionally coupling Ca2+ channels to the presynaptic machinery. 相似文献
9.
A developmental change in the ionic basis of the inward current of action potentials has been observed in many excitable cells. In cultured spinal neurones of Xenopus, the timing of the development of the action parallels that seen in vivo. In vitro, as in vivo, neurones initially produce action potentials of long duration which are principally Ca-dependent; after 1 day of development the impulse is brief and primarily Na-dependent. At both ages, however, both inward components are present and the mechanism underlying shortening of the action potential is unknown. One possibility is that the outward currents change during development. Using the patch-clamp technique, we have recorded single K+-channel currents in membrane patches isolated from the cell bodies of cultured embryonic neurones. The unitary conductance of one class of K+ channels was approximately 155 pS and depolarization increased the probability of a channel being open. Neither conductance nor voltage dependence seemed to change with time in culture; in contrast, the Ca2+-sensitivity of this K+ channel increased. In younger neurones, Ca2+-sensitivity was greatly reduced or absent, whereas in more mature neurones, the activity of this channel was Ca-dependent. Such a change could account for the shortening of the action potential duration by increasing the relative contribution of outward currents. 相似文献
10.
11.
Inositol 1,4,5-trisphosphate (Ins P3) is a second messenger releasing intracellular Ca2+ into the cytosol. It has recently been proposed that inositol 1,3,4,5-tetrakisphosphate (Ins P4), which is formed from Ins P3 by Ins P3-3-kinase, acts with Ins P3 as a second messenger by promoting extracellular Ca2+ entry. It has been suggested that Ins P3 itself can act to stimulate Ca2+ uptake from the extracellular fluid, although a physiological function for Ins P4 was not excluded. Transmembrane currents can now be measured in single cells by voltage clamping under conditions where the intracellular perfusion fluid can be changed several times during individual experiments. We have used this method to test the effects of Ins P3 and Ins P4 on the Ca2+-activated K+ current, and now show that neither Ins P3 alone nor Ins P4 alone can activate a sustained current, whereas Ins P3 and Ins P4 in combination evoke a sustained increase in Ca2+-activated K+ current which is dependent on external Ca2+. 相似文献
12.
G D van Rossum 《Nature》1970,225(5233):638-639
13.
H Glossmann 《Nature》1985,313(6002):503-504
14.
15.
Normal human serum has been known to exert a cytotoxic effect on Trypanosoma brucei subspecies for nearly 80 yr. But in spite of many attempts, no trypanocidal factor was found in human or baboon serum, until Rifkin demostrated a high density lipoprotein (HDL) in normal human serum with trypanocidal activity. The conclusion that this was the trypanocidal factor was supported by the report that serum from patients with Tangier disease, characterised by a severe deficiency of HDL, lacked trypanocidal activity. We report here that Ca2+ is an essential cofactor for the trypanocidal activity of normal human serum, in which alpha2 macroglobulin (alpha 2) might function as a Ca2+-carrier. We further show that D-glucose, D-fructose and D-mannose can suppress the trypanocidal action of normal human serum, whereas glycerol has the opposite effect. 相似文献
16.
Ca2+/calmodulin-dependent regulation of voltage-gated CaV1-2 Ca2+ channels shows extraordinary modes of spatial Ca2+ decoding and channel modulation, vital for many biological functions. A single calmodulin (CaM) molecule associates constitutively with the channel's carboxy-terminal tail, and Ca2+ binding to the C-terminal and N-terminal lobes of CaM can each induce distinct channel regulations. As expected from close channel proximity, the C-lobe responds to the roughly 100-microM Ca2+ pulses driven by the associated channel, a behaviour defined as 'local Ca2+ selectivity'. Conversely, all previous observations have indicated that the N-lobe somehow senses the far weaker signals from distant Ca2+ sources. This 'global Ca2+ selectivity' satisfies a general signalling requirement, enabling a resident molecule to remotely sense cellular Ca2+ activity, which would otherwise be overshadowed by Ca2+ entry through the host channel. Here we show that the spatial Ca2+ selectivity of N-lobe CaM regulation is not invariably global but can be switched by a novel Ca2+/CaM-binding site within the amino terminus of channels (NSCaTE, for N-terminal spatial Ca2+ transforming element). Native CaV2.2 channels lack this element and show N-lobe regulation with a global selectivity. On the introduction of NSCaTE into these channels, spatial Ca2+ selectivity transforms from a global to local profile. Given this effect, we examined CaV1.2/CaV1.3 channels, which naturally contain NSCaTE, and found that their N-lobe selectivity is indeed local. Disruption of this element produces a global selectivity, confirming the native function of NSCaTE. Thus, differences in spatial selectivity between advanced CaV1 and CaV2 channel isoforms are explained by the presence or absence of NSCaTE. Beyond functional effects, the position of NSCaTE on the channel's amino terminus indicates that CaM can bridge the amino terminus and carboxy terminus of channels. Finally, the modularity of NSCaTE offers practical means for understanding the basis of global Ca2+ selectivity. 相似文献
17.
Effects of protein kinase C activators on cardiac Ca2+ channels 总被引:4,自引:0,他引:4
Phorbol esters have marked effects on voltage-dependent Ca2+ channels. Inhibitory and stimulatory effects on cardiac Ca2+ channels have been attributed in both cases to activation of protein kinase C. We show that the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate stimulates dihydropyridine-sensitive 45Ca2+ influx in primary cultures of neonatal rat ventricular myocytes within 5 s, but that after a 20-min pre-incubation period the phorbol ester markedly inhibits 45Ca2+ influx. The sequence of stimulation followed by inhibition is confirmed in cell-attached patch clamp recordings of single Ca2+ channel currents. The stimulatory effect is faster at 0 mV than at -40 mV, leading to the novel conclusion that the rate of protein kinase C activation is modulated by the state of the Ca2+ channel. 相似文献
18.
Alpha 1-adrenoceptor subtypes linked to different mechanisms for increasing intracellular Ca2+ in smooth muscle 总被引:2,自引:0,他引:2
Receptor-mediated increases in intracellular Ca2+ levels can be caused by release from intracellular organelles and/or influx from the extracellular fluid. Noradrenaline (NA) released from sympathetic nerves acts on alpha 1-adrenoceptors to increase cytosolic Ca2+ and promote smooth muscle contraction. In many cells activation of alpha 1-adrenoceptors causes formation of inositol 1,4,5-trisphosphate which promotes Ca2+ release from intracellular stores. The mechanism by which receptor activation opens cell surface Ca2+ channels is not known, although in some cases it may be secondary to formation of inositol phosphates or release of stored intracellular Ca2+ (ref. 3). However, alpha 1-adrenoceptors have recently been shown to have different pharmacological properties in different tissues, and it has been proposed that different alpha 1-adrenoceptor subtypes may control mobilization of intracellular Ca2+ and gating of extracellular Ca2+ influx. We here report evidence for two subtypes of alpha 1-adrenoceptors which cause contractile responses through different molecular mechanisms. One subtype stimulates inositol phosphate (InsP) formation and causes contractions which are independent of extracellular Ca2+, and the other does not stimulate inositol phosphate formation and causes contractions which require the influx of extracellular Ca2+ through dihydropyridine-sensitive channels. These results suggest that neurotransmitters and hormones may control Ca2+ release from intracellular stores and influx through voltage-gated membrane channels through distinct receptor subtypes. 相似文献
19.
Quantification of Ca2+-activated K+ channels under hormonal control in pig pancreas acinar cells 总被引:1,自引:0,他引:1
Ca2+- and voltage-activated K+ channels are found in many electrically excitable cells and have an important role in regulating electrical activity. Recently, the large K+ channel has been found in the baso-lateral plasma membranes of salivary gland acinar cells, where it may be important in the regulation of salt transport. Using patch-clamp methods to record single-channel currents from excised fragments of baso-lateral acinar cell membranes in combination with current recordings from isolated single acinar cells and two- and three-cell clusters, we have now for the first time characterized the K+ channels quantitatively. In pig pancreatic acini there are 25-60 K+ channels per cell with a maximal single channel conductance of about 200 pS. We have quantified the relationship between internal ionized Ca2+ concentration [( Ca2+]i) membrane potential and open-state probability (p) of the K+ channel. By comparing curves obtained from excised patches relating membrane potential to p, at different levels of [Ca2+]i, with similar curves obtained from intact cells, [Ca2+]i in resting acinar cells was found to be between 10(-8) and 10(-7) M. In microelectrode experiments acetylcholine (ACh), gastrin-cholecystokinin (CCK) as well as bombesin peptides evoked Ca2+-dependent opening of the K+ conductance pathway, resulting in membrane hyperpolarization. The large K+ channel, which is under strict dual control by internal Ca2+ and voltage, may provide a crucial link between hormone-evoked increase in internal Ca2+ concentration and the resulting NaCl-rich fluid secretion. 相似文献
20.
Modulation of dihydropyridine-sensitive Ca2+ channels by glucose metabolism in mouse pancreatic beta-cells 总被引:14,自引:0,他引:14
Glucose stimulates insulin secretion from the pancreatic beta-cell by increasing the cytosolic calcium concentration. It is believed that this increment results mainly from Ca2+ influx through dihydropyridine-sensitive calcium channels because insulin secretion is abolished by dihydropyridine antagonists and is potentiated by dihydropyridine agonists. Glucose may influence Ca2+ influx through these channels in two ways: either by regulating the beta-cell membrane potential or by biochemical modulation of the channel itself. The former mechanism is well established. Glucose metabolism, by closing ATP-sensitive K+ channels, depolarizes the beta-cell membrane and initiates Ca2+-dependent electrical activity, with higher glucose concentrations further increasing Ca2+ influx by raising the frequency of action potentials. We show here that glucose metabolism also increases calcium influx directly, by modulating the activity of dihydropyridine-sensitive Ca2+ channels. 相似文献