首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
主要证明下述定理 :如果X是仿紧的C -分散空间 ,则X×Y是σ -仿紧的当且仅当Y是σ -仿紧的。此外 ,我们还指出 ;σ -序列meso紧也有完全类似的结果  相似文献   

2.
类比S-仿紧空间,引入S-σ-仿紧空间与S-σ-仿Lindelof空间的概念。给出了S-σ-仿Lindelof空间的一个充要条件和S-σ-仿Lindelof对完备优柔映射下的一个逆保持性质。利用所获得的这两个结果证明了S-σ-仿Lindelof空间与紧空间的乘积仍是S-σ-仿Lindelof。最后指出:S-σ-仿紧空间具有类似于S-σ-仿Lindelof空间结果。  相似文献   

3.
证明了σ -meso紧空间乘积的两个主要结果 :(1)若X =Xσ∈ Xσ 是 | |-仿紧的 ,则X是σ -meso紧的当且仅当 F∈ [ ]<ω,∏σ∈F是Xσ 是σ -meso紧的 ;(2 )设X=∏i∈ωXi,则下列各条等价 :①X是遗传σ -meso紧的 ;② σ∈ [ω]<ω,∏i∈σXi 是遗传σ -meso紧的 ;③ n∈ω∏i相似文献   

4.
主要研究了两部分内容:一是σ-ortho紧空间的Tychonoff乘积性;二是给出了基-可数仿紧空间的一系列性质;着重证明了:如果X=Пσ∈∑^Xσ是│∑│-仿紧空间,则X是σ-ortho紧空间当且仅当任意F∈│∑│^〈ω,Пσ∈F^Xσ是σ-ortho紧空间。  相似文献   

5.
主要证明了如下结果 :用P表示下列诸覆盖性质之一 :亚紧 ;次亚紧 ;弱次亚紧 ;σ -亚紧 .( 1)如果X =∏α∈ΛXα 是 |Λ| -仿紧空间 ,则X具有P当且仅当 F∈ [Λ]<ω,∏α∈FXα 具有P ;( 2 )如果X =∏i∈ωXi 是可数仿紧的 ,则下列三条等价 :X具有P : F∈ [ω]<ω,∏i∈FXi具有P : n <ω ,∏i≤nXi,具有P .  相似文献   

6.
Meso紧空间及次meso紧空间的Tychonoff乘积   总被引:1,自引:1,他引:1  
该文主要证明了如下结果:引理在ω<ω。上存在一个滤子满足:对于每个次meso紧空间X和X的每个开覆盖,存在的开加细序列使得对于任何紧子集.有.定理设X是正则meso紧(次meso紧)空间,Y是meso紧(次meso紧)空间,如果PlayerI在G(DC,X)中有必胜策略,则X×Y是meso紧(次meso紧)的  相似文献   

7.
主要获得了如下结果:设X=σ{Xα:α∈A},如果X的每个有限子积累是meso紧(次meso紧)的且X正规,则X是meso紧(次meso紧)的。  相似文献   

8.
主要获得了两个拓扑空间的Tychonoff乘积是σ-仿紧空间的3个定理。  相似文献   

9.
证明了如下结果:(1)如果X=∏τ∈∑Xτ是λ-超仿紧空间,则X是σ-集体正规空间当且仅当F∈∑ω,X=∏τ∈∑Xτ是σ-集体正规空间。(2)设X=∏i∈ωXi是可数仿紧的,则下列三条等价:X是σ-集体正规的;F∈[ω]ω,X=∏i∈FXi是σ-集体正规的;n∈ω,∏i≤nXi是σ-集体正规的。  相似文献   

10.
正规狭义拟仿紧空间的σ-积   总被引:1,自引:0,他引:1  
首先证明如下两结果:(1)设X=σ{Xα:α∈A}是│A│-仿的,如果X的每个有限子积是正规狭义拟仿紧的,则X是正规狭义拟仿紧的;(2) X=σ{Xα:α∈A}是遗传│A│-仿紧的,如果X的每个有限子积是遗传正规狭义拟仿紧的,则X是遗传正规狭义拟仿紧的。其次指出:正规弱θ^--可加空间和正规弱δθ^--可加空间也有类似性质。  相似文献   

11.
讨论了S-仿紧空间的开Fσ-遗传性,证明了正规S-仿紧空间的开Fσ-子空间是S-仿紧的.这一结果深化了K.Y.Al-Zoubi关于S-仿紧空间的开闭遗传性.  相似文献   

12.
主要获得如下两个结果:(1)设X=σ{Xa:a∈A},如果X的每个有限子积是σ-亚紧的,则X是σ-亚紧的;(2)设X=σ{Xa:a∈A},如果X的每个有限子积是σ-meso紧(σ-序列meso紧)的且X正规,则X是σmeso紧(σ-序列meso紧)的。  相似文献   

13.
14.
关于σ-序列Meso紧空间的Tychonoff乘积性质   总被引:2,自引:2,他引:0  
主要在σ-序列Meso紧空间上获得两个结论  相似文献   

15.
给出了在κ-仿紧条件下的狭义拟仿紧性的逆极限定理,对于遗传狭义拟仿紧性,分别给出了在遗传κ-仿紧和遗传κ-次仿紧两个不同条件下的逆极限定理。  相似文献   

16.
高国士在文[2]中证明了,若X是紧空间,Y是可数仿紧、可数中紧或可数弱仿紧,则X×Y也分別是可数仿紧、可数中紧或可数弱仿紧。本文在X为T_2空间的条件下推广了上述结果,若X为局部紧可数仿紧,Y是可数仿紧、可数中紧或可数弱仿紧,则X×Y也分别是可数仿紧、可数中紧或可数弱仿紧的。  相似文献   

17.
在逆序列的情形下,假设极限空间是可数仿紧时.证明了σ-集体正规性、σ-满正规性可被其极限空间保持,同时证明了遗传σ-集体正规性、遗传σ-满正规性在无需对极限空间X附加任何条件的情况下可被其逆极限空间保持.利用这两个结果,分别得到了相关的两个具有可数个无限因子的Tychonoff乘积定理.  相似文献   

18.
σ-meso紧空间的乘积性质   总被引:1,自引:1,他引:0  
主要获得两个σ-meso紧空间的乘积是σ-meso紧空间的两个定理.  相似文献   

19.
本文主要证明:(1)如果∏σ∈∑Xσ是遗传|∑|-超仿紧空间,则X是遗传超仿紧空间当且仅当А↓F∈∑,∏σ∈FXσ以是遗传超仿紧空间.(2)设x=∏σ∈∑Xσ以是遗传可数超仿紧空间,则下列三条等价:X是遗传超仿紧空间;А↓F∈[ω]^〈ω,∏i∈FXi是遗传超仿紧空间;А↓n∈ω,∏isnXi是遗传超仿紧空间.  相似文献   

20.
该文得到如下结果:设X是逆系统{Xa,παβ,Λ}的逆极限,|Λ|=λ,假设每个投射πα:X→Xα是开且到上的,X是λ仿紧的,如果每个Xα是σ序列Meso紧的,则X是σ序列Meso紧的.对遗传σ序列Meso紧性,我们有类似的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号