共查询到19条相似文献,搜索用时 109 毫秒
1.
《西安石油大学学报(自然科学版)》2017,(5):102-106
为了提高模糊C均值聚类(FCM)算法用于图像分割时对噪声的鲁棒性,在FCM算法中引入了图像像素的邻域约束,提出一种空间加权模糊C均值聚类图像分割算法。首先根据邻域像素的模糊隶属度函数值,定义像素分类标记的局部先验概率,然后将该局部先验概率融入标准的FCM算法的目标函数中,从而提出一种空间加权模糊C均值聚类图像分割算法。仿真实验通过合成图像和真实图像验证了该算法的有效性和鲁棒性。 相似文献
2.
基于改进模糊C均值聚类的图像分割算法 总被引:1,自引:0,他引:1
提出了一种基于模糊C均值算法和粒子群算法的混合算法.该算法利用PSO算法全局性和鲁棒性的特点,将PSO优化聚类结果作为后续FCM算法的初始值,有效地克服了FCM对初始值敏感,易陷入局部最优和PSO算法局部搜索较弱的问题.算法中使用基于统计直方图的快速FCM算法进行初始化,收敛速度大大提高.实验结果表明该算法具有较高的分割速度及其对噪声的较强的鲁棒性. 相似文献
3.
考虑到无损检测图像具有易受噪声干扰且目标占图像面积较小的特性,以图像块为基本单元,提出一种较强鲁棒性和自适应性的抑制式模糊C均值算法用于无损检测图像的分割.首先,对图像块内像素的权重进行自适应确定,其权重受图像块内像素的空间距离和灰度值大小的影响;然后构建了图像块的模糊不确定性模型,并以图像块为基本单元将其引入至新的目标函数并进行求解,给出算法的执行流程;最后采用无损检测图像进行实验,结果显示所提出的算法具有较好的鲁棒性和有效性. 相似文献
4.
改进的快速模糊C均值聚类的图像分割方法 总被引:3,自引:0,他引:3
传统的模糊C均值(FCM)聚类算法广泛用于图像的自动分割,但该算法没有考虑像素的灰度和空间特征,对噪声和伪斑点图像不可能取得好的分割效果.提出一种改进的算法,在快速的FCM聚类的基础上,运用邻域像素的灰度相似度和聚类分布统计构造新的隶属函数,对图像进行二次聚类分割.该算法具有以下优点:1)有效地抑制了噪声的干扰;2)减少了图像的伪斑点;3)把误分类的像素很容易地纠正过来.对两种类型图像的实验分割结果表明该方法对噪声和伪斑点具有很强的鲁棒性和对像素聚类的正确性. 相似文献
5.
针对背景与前景颜色差别较小的原木图像分割效果不理想的情况,本文给出了模糊C均值聚类与Otsu相结合的图像分割方法。该方法首先以标准原木数据库为样本,之后使用模糊C均值聚类算法把背景与前景颜色差别较小的原木样本图像分割成2类,其次利用准则函数找出前景分割结果,最后把该结果作为Otsu算法的输入,对原木样本图像进行再次分割。实验结果表明,本文研究的算法比单独使用模糊C均值聚类算法、Otsu和同类算法有较好的分割效果和较高的分割准确率,边缘信息保留较好,平均分割准确率提高2个百分点。 相似文献
6.
传统的模糊C均值(FCM)聚类算法广泛用于图像的自动分割,但它有两个缺陷:一是收敛速度过慢;二是当图像的目标和背景像素拥有相近的灰度值,具有相似的隶属度,导致了图像边界区域的不连续和模糊.针对该问题,提出一种改进的算法,在快速FCM聚类的基础上,利用粗糙集理论中的上近似和下近似的概念来描述图像的目标和背景,引入粗糙熵的概念,选择合适的阈值,对图像进行精确分割.实验结果表明,这种算法可以达到满意的分割效果. 相似文献
7.
一种基于模糊C均值聚类的图像区域分割方法 总被引:2,自引:5,他引:2
提出一种基于模糊C均值聚类的彩色图像区域分割方法。该方法首先选用适当的彩色空间对图像中的每个像素抽取颜色、纹理及空间位置等综合特征;然后,利用模糊C均值聚类方法进行聚类,利用提出的确定最佳聚类簇数的方法,确定聚类簇数、中心等参数;根据每个像素的隶属函度,将像素初步划归不同的组,利用连接原理对图像区域进一步分割,并提供了图像描述特征。实验结果表明,该方法分割效果很好。 相似文献
8.
基于快速全局模糊C均值聚类算法的脑瘤图像分割 总被引:1,自引:0,他引:1
针对经典模糊C均值聚类算法对初始聚类中心过于敏感的缺陷,提出一种快速全局模糊C均值聚类算法.该算法采用分阶段动态递增的方式选取初始聚类中心,避免了随机化设置导致的聚类结果稳定性差问题.实验分析表明,改进后的模糊C均值聚类算法在脑瘤图像分割中的聚类效果较好,多个数据集的聚类准确率也表明,快速全局模糊C均值算法的聚类稳定性明显提升. 相似文献
9.
基于顾及像素空间信息的加权FCM聚类的图像分割 总被引:1,自引:0,他引:1
针对标准的FCM算法没有考虑像素的空间信息而对噪声比较敏感和没有考虑不同样本数据对聚类效果的不同影响的不足,提出了一种顾及像素空间信息的基于图像的灰度直方图加权的FCM聚类算法,它在Szilagyi等提出的算法基础上通过引入图像的灰度直方图加权对算法中的目标函数进行修改. 对人工合成图像和真实图像的数值模拟结果均显示出该算法的优良性能. 相似文献
10.
基于直方图偏差约束的快速模糊C均值图像分割法 总被引:2,自引:1,他引:2
为了解决传统模糊C均值(FCM)聚类分割算法计算耗时的问题,提出了在直方图偏差约束条件下的快速FCM图像分割算法.通过对原始图像重新采样以减小FCM算法数据处理的数量,利用平滑后归一化直方图的距离偏差作为约束条件来计算合适的采样率,以控制重新采样产生的图像失真,得到满足正确分割所需要的阈值,并在采样率计算中采用黄金分割法搜索满足约束条件的采样率.实验结果表明,在保持传统FCM聚类算法分割效果的前提下,所提算法的分割时间分别仅为传统的FCM、二维熵、Otsu等算法的3.0%~11.2%、9.2%~30.2%和15.0%~52.0%. 相似文献
11.
提出了一种基于模糊C均值算法和生物地理学优化算法的混合聚类算法(BBO-FCM).该算法结合了生物地理学优化算法的全局搜索和FCM算法快速局部搜索的特点,利用生物地理中的迁移算子来进行各解之间的信息共享,从而有效地克服了FCM对初始值敏感、易陷入局部最优等问题.将BBO-FCM算法用于图像分割,实验表明,新算法的聚类效果评价指数更好,聚类效果明显优于原始的FCM算法. 相似文献
12.
张伟 《重庆大学学报(自然科学版)》2012,35(2):149-154
基本本质粒子群算法存在易陷入局部最优以及过早收敛的缺点。在基本本质粒子群算法的基础上,借鉴差分进化中利用差分量对种群进行变异操作的思想,提出了差分变异本质粒子群优化算法。结合图像模糊熵,得到了基于差分变异粒子群优化的模糊熵图像分割算法。算法利用差分变异本质粒子群来搜索使图像模糊熵最大的参数值,得到分割闽值对图像进行分割。通过与其它两种本质粒子群算法的分割结果比较表明该算法取得了令人满意的分割结果,算法运算时间很小,能够满足对煤尘浓度实时精确测量的要求。 相似文献
13.
一种广义加权模糊聚类算法 总被引:2,自引:0,他引:2
提出了一种广义的加权模糊聚类新算法来处理具有不同特征贡献和不同数据分布的混合属性数据.分别利用样本概率密度思想和ReliefF算法为每一个样本和每一维特征分配权值,通过样本和特征的加权,将模糊c均值算法、模糊c-modes算法、模糊c-原型算法以及样本加权聚类算法统一为一个通用的框架.不同测试数据集的实验结果证明,这种广义的模糊聚类新算法对于处理不同分布以及具有不同特征贡献的大数据集是相当有效的. 相似文献
14.
针对煤矿井下图像对比度小、纹理不清晰和数据量大等问题,根据各向异性扩散在图像处理中具有良好的边缘保持与增强的作用,提出一种基于各向异性扩散的图像分割算法.首先在图像分割前对原图像进行各向异性扩散运算,在消除原图像噪声的同时,更好地划分了图像的边缘和纹理区域;然后提取图像的纹理特性运用到聚类算法中,从而对图像进行分割.实验证明:与未经扩散处理的分割算法相比,基于各向异性扩散的图像分割算法不仅改善了分割效果,而且提高了计算速度. 相似文献
15.
基于模糊逻辑的彩色图像分割 总被引:1,自引:0,他引:1
模糊图像分割主要是针对灰度图像,文中提出了基于模糊逻辑的彩色图像分割算法,并同时包含了色调的平均处理。定义了模糊规则、隶属度函数。和概率C均值、模糊C均值等其它算法的定性和定量对比实验,验证了本方案对RGB和HSV模型彩色图像的分割效果更好。 相似文献
16.
基于多阈值模糊增强的手指静脉图像分割 总被引:1,自引:0,他引:1
根据手指静脉图像的特点,针对经典阈值方法难以满足图像多属性分割要求的不足,文章在单层次模糊图像增强算法的基础上,提出了一种改进的手指静脉图像分割算法,讨论了该算法的基本原理和具体计算步骤.实验结果表明:与传统的方法相比,该算法方法简单、容易实现,对低质量手指静脉的分割达到了令人满意的效果,分割结果不但准确而且纹路具有明显方向性. 相似文献
17.
李伟 《哈尔滨商业大学学报(自然科学版)》2013,29(4)
目前的FCM类型的算法聚类数目的确定需要聚类原形参数的先验知识,否则算法就会产生误导.为了提高图像分割算法的抗噪性能,用K均值聚类算法简单、快速的优点对模糊C均值聚类算法进行改进.结合图像的邻域信息,对图像的直方图作均衡化处理,改善图像质量,通过自适应滤波,降低噪声对分割效果的影响.先用K均值聚类算法对图像进行分割,快速的获得较为准确的聚类中心和初次分割图像,避免了FCM算法中初始聚类中心选择不当造成的死点问题.用邻域灰度均值信息代替传统模糊C均值聚类算法中的灰度信息,对K均值聚类得到的图像作二次分割.该方法能更好的抑制噪声的干扰,提高了聚类算法的分割精确度. 相似文献
18.
针对模糊PID控制器参数难以整定的问题,提出一种基于双变异策略协同工作的自适应差分进化算法DSDE。该算法采用随进化代数变化的权重因子,将经由DE/target-to-best/1和DE/rand/2两种变异策略生成的个体加权组合成一个新的变异个体,并采用Z型函数根据迭代次数自动调整变异因子,以适应于不同的进化阶段。将DSDE算法应用于二阶被控对象的模糊PI控制器(FPI)参数整定,MATLAB仿真结果表明,与传统的FPI、DE-FPI和采用自适应变异差分进化算法进行参数整定的AMDE-FPI相比,基于DSDE算法的模糊PI控制器具有更好的控制性能。 相似文献
19.
为了提高传统DV-Hop(distance vector-hop)算法的定位精度,提出一种基于跳距修正和差分进化优化的改进DV-Hop(differential evolution distance vector-hop,DEDV-Hop)算法。由DV-Hop的算法原理可知,锚节点间的距离测量误差是算法定位误差的主要来源,由此根据锚节点间的不同跳数引入权重因子,从而减小平均每跳距离误差,并且利用差分进化算法对最小二乘法计算出的节点坐标进行二次优化,最终提高系统的整体定位精度。为了验证算法的有效性,在相同实验条件下,通过设置不同的定位参数将提出的算法与同类的经典算法进行实验对比。实验结果表明,DEDV-Hop算法可以有效减少节点平均定位误差,其定位精度明显优于其他几种算法。 相似文献