首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
钢渣粉的胶凝性及其对水泥力学性能的影响   总被引:2,自引:2,他引:0  
钢渣粉作为辅助胶凝材料用于水泥混凝土领域中的潜力很大,研究了钢渣粉自身的胶凝性及其粒径大小、掺入量对钢渣-水泥复合胶凝材料力学性能的影响。结果表明:钢渣粉的浆体强度和水化程度随其粒径减小而显著提高(28 d抗压强度4.0提高到21.5 MPa,Ca(OH)2含量从3.49%提高到5.48%,非蒸发水含量从4.8%提高到10.71%)。含30wt%钢渣粉的复合水泥3 d净浆和胶砂强度均表现出随微粉粒径的减小先增大,后降低(SC-40为拐点),而7 d、28 d强度随微粉粒径的减小而不断增大。钢渣粉的掺量对水泥浆体强度和水化程度的影响显著,水泥各龄期强度和水化程度均随钢渣粉掺量的增加而逐渐降低,且各龄期强度与钢渣粉含量均符合多项式函数关系。  相似文献   

2.
为了解基于再生微粉的复合胶凝材料的水化硬化机理,本文将再生微粉和粉煤灰单掺或与硅灰复掺以50%、60%、70%的取代率取代水泥制备水泥净浆试件,研究其抗压强度、水化放热速率、放热量及水化产物的变化规律。结果表明:随着取代率增加,胶凝材料抗压强度降低,取代率为50%时,胶凝材料力学性能最佳,其中复掺再生微粉和硅灰龄期为7d时,其抗压强度达到了29.1MPa;复掺再生微粉和硅灰的早期放热速率与复掺粉煤灰和硅灰基本一致,但加速了二次放热且放热量均低于纯水泥组;通过XRD试验可以发现,随着取代率增大,复掺再生微粉和硅灰的Ca(OH)2衍射峰逐渐减弱,表明其促进了二次水化,也证明了再生微粉具有火山灰活性,且再生微粉的火山灰活性大于粉煤灰。该结果可为研发生态建筑材料提供理论支撑。  相似文献   

3.
矿渣、粉煤灰及减水剂对混凝土抗压强度的影响   总被引:1,自引:0,他引:1  
利用矿渣和粉煤灰这些工业废渣及其活性特点进行试验。该试验所研究的混凝土强度等级为C30,选用42.5强度等级的普通硅酸盐水泥,通过对八种方案进行试配,测试分析混凝土的性能和混凝土四个龄期的抗压强度,通过对各种配合比的矿渣粉煤灰混凝土各龄期抗压强度与基准混凝土同龄期抗压强度的对比分析,找出理想的矿渣粉煤灰混凝土的配合比。总结了每种方案中最佳配合比掺量。  相似文献   

4.
为了实现废弃黏土砖的再生利用,通过物理球磨的方法制备出再生黏土砖粉,将其作为辅助性胶凝材料来取代部分水泥制备复合水泥浆体.采用量热仪、X射线衍射仪和热重分析仪研究了黏土砖粉掺量对复合胶凝材料体系的水化热、水化产物和热重性能的影响.实验结果表明:随着黏土砖粉掺量的增加,水泥水化累积放热量不断降低,当黏土砖粉掺量为40%时胶凝体系的3 d水化累积放热量可降低35.39%.XRD测试结果证明,随着养护龄期的增长,Ca(OH)_2逐渐与黏土砖粉中活性SiO_2和Al_2O_3发生火山灰反应,在龄期180 d时Ca(OH)_2的特征峰强度损失更大.DSC-TG定量分析确定了在90 d龄期后,黏土砖粉反应消耗了更多的Ca(OH)_2,使得胶凝体系中Ca(OH)_2含量减少.  相似文献   

5.
运用助磨剂改性钢渣复合胶凝材料,研究改性钢渣复合胶凝材料粉体比表面积变化;研究复合胶凝材料抗折强度、抗压强度等力学性能;并分析材料3d、28 d水化矿物.结果显示S58助磨剂能够改善材料活性,使得胶凝材料28 d抗压强度达到42.5 MPa硅酸盐水泥标准;SEM-EDS显示水化初期矿物以氢氧化钙和钙矾石为主,水化28 d,材料较之迷化,生成大量的C-S-H凝胶,复合水泥强度大幅提高.  相似文献   

6.
再生混凝土力学性能较差,无法广泛应用,在预先浸泡再生骨料的基础上,将辅助胶凝材料纳米硅溶胶(1%,3%, 5%)与粉煤灰(10%, 15%, 20%)复合掺入再生混凝土中制备了改性再生混凝土。通过抗压强度、劈裂抗拉强度、坍落度试验探究了辅助胶凝材料对再生混凝土综合使用性能的影响;并在微观层次上揭示了辅助胶凝材料对再生混凝土性能影响的作用机理。结果表明,两种材料复合掺入后的协同作用使再生混凝土的力学性能、工作性能得到了全面提升,经试验测得纳米硅溶胶与粉煤灰的最佳复掺量分别为3%, 15%,其90 d抗压强度和劈裂抗拉强度最多提升50.5%, 73.6%,坍落度保持在165 mm左右。微观表征显示复掺两种材料加快了水泥水化反应,降低了水泥浆体的钙硅比,并由此增加了C-S-H凝胶含量;絮凝状C-S-H凝胶紧密包裹着水化产物,填充了混凝土内部的孔隙和裂缝,优化了界面过渡区结构,再生混凝土的强度得到显著提升。  相似文献   

7.
大掺量冶金渣制备高强度人工鱼礁混凝土的试验研究   总被引:1,自引:0,他引:1  
通过正交试验研究了用作制备高强度人工鱼礁的钢渣--矿渣--熟料--石膏体系胶凝材料的强度.净浆正交试验表明:钢渣∶矿渣的复合比为5∶3,并与10%的水泥熟料和10%的脱硫石膏复合的胶凝材料具有较高的强度.以优化后的胶凝材料代替水泥,并以热闷法稳定化的钢渣颗粒为骨料,可以制备出抗压强度达到50 MPa以上的人工鱼礁混凝土.利用X射线衍射和扫描电镜分析净浆的水化过程,发现体系在早期水化主要生成AFt相和C--S--H凝胶,在后期钢渣和矿渣的火山灰活性反应对强度的增长起主要作用.  相似文献   

8.
为了研制低水泥用量的环保型高性能胶凝材料,分析其实现的理论基础和技术途径,得出其中的关键技术是优化胶凝体系的组分及其掺量以及配合振动磨机的活化处理技术,从而大幅度提高水泥的水化程度,使得水泥用量最小.结合试验研制环保高性能胶凝材料(EHPCM),首先选择胶凝体系,然后,对四元胶凝体系中各个规格的组分进行优化.理论计算和实验结果表明:通过磨机活化技术处理的四元胶凝体系水泥用量最少,且具有最高的水泥水化程度和较优异的力学性能,是环保高性能胶凝材料最适宜的胶凝体系;环保胶凝材料的配比即水泥、硅灰、粉煤灰、石英粉的质量比为1-0.25-0.35-0.40,运用这种胶凝材料可配制出流动性良好,抗压强度和抗折强度分别达132 MPa和18 MPa的活性粉末混凝土.  相似文献   

9.
以我国台湾省的矿渣、电炉还原渣和脱硫石膏为主要原料制备矿渣-电炉还原渣-石膏体系胶凝材料,28 d的胶砂抗压强度达到39 MPa,可在某些场合作为普通水泥来使用。采用3种方法检测胶凝材料的安定性,其结果均符合国家标准;采用X线衍射(XRD)、场发射扫描电镜(FE-SEM)、能量色散谱(EDS)、傅里叶红外光谱(FT-IR)、热重-差示扫描量热法(TG-DSC)和X线光电子能谱(XPS)分析胶凝材料的水化过程。研究结果表明:水化产物主要为钙矾石和C-S-H凝胶,水化产物的聚合度随龄期的增长而增加;在水化反应中,矿渣提供具有潜在水硬活性的硅氧四面体和铝氧四面体,电炉还原渣提供碱性氧化物,石膏提供硫酸根离子;三者协同作用形成的钙矾石类复盐和非晶态的C-S-H凝胶是材料强度的主要来源。  相似文献   

10.
利用普通硅酸盐水泥为胶凝材料,用少量粉煤灰和矿粉取代部分水泥,按照质量比16:3:1(依次为水泥、粉煤灰、矿粉)、水料比0.5,制备了不同气泡含量的泡沫混凝土。对试样进行单轴压缩破坏试验,得到了不同龄期不同气泡含量的泡沫混凝土破坏应力以及其应力-应变曲线,研究了强度、弹性模量随龄期的变化规律以及与气泡率之间的关系,探讨了泡沫混凝土弹性模量与强度之间的关系。结果表明,泡沫混凝土的抗压强度在一定范围内,受龄期影响较大,而弹性模量受龄期影响较小;抗压强度、弹性模量、屈服应变随气泡率增大而减小;强度和弹性模量与气泡率成指数关系,强度与弹性模量成对数关系。  相似文献   

11.
为了提高废弃陶瓷在混凝土中的利用率,将废弃陶瓷破碎、筛分加工成人工细骨料,按不同比例(10%,20%,30%,40%及50%),且分别采用“C”替代法(即传统替代方式,要求陶瓷细骨料细度模数与天然河砂细度模数相近即可,等质量取代)、“P”替代法(陶瓷细骨料一对一平均替代对应的不同粒径的天然河砂)、“D”替代法(陶瓷细骨料一对一且仅替代粒径为1.18,2.36和4.75mm粒径相对较大的天然河砂)及“X”替代法(陶瓷细骨料一对一且仅替代粒径为0.15,0.3和0.6mm粒径相对较小的天然河砂)取代天然河砂,制备陶瓷细骨料混凝土.共设计21组混凝土,包括基准混凝土1组,“C”,“P”,“D”及“X”替代法各5组.水胶比均为0.49,进行混凝土28d的抗压强度试验.结果表明:在水胶比为0.49的条件下,陶瓷细骨料掺量不大于50%时,陶瓷细骨料混凝土抗压强度和基准混凝土为同一强度等级,均到达C30强度等级要求;不同的替代方式,对应的陶瓷细骨料最佳掺量不同;不同的陶瓷细骨料掺量,对应的最优替代方式不同.  相似文献   

12.
沸石粉活性较低,在混凝土中掺量较多时,难以成型,使材料强度下降,再加上其比表面积大、吸水率高,导致材料流动度显著降低,不利于实际工程中的应用。为了提升天然沸石粉的活性,使用Ca(OH)2活化和水热活化复合的方法对沸石粉进行活化处理,等质量取代30%水泥制作胶砂试件,测定其3个龄期的力学强度和流动度,并采用比表面积测定、扫描电子显微镜、X射线衍射、热重试验进行微观机理分析。结果表明:Ca(OH)2掺量为8%时,胶砂力学强度最高,28 d抗压强度达到35.0 MPa,比掺天然沸石粉的水泥胶砂的抗压强度增加了20.7%;天然沸石粉经复合活化后活性明显提升,最佳Ca(OH)2掺量为8%,28 d强度活性指数增加16%;复合活化改变了沸石粉表面结构,其表面从粗糙不平变得光滑,有利于流动性增加,且随着Ca(OH)2掺量的增加,水泥胶砂流动度呈现增长趋势。  相似文献   

13.
分别对7 d、28 d、60 d龄期的不同再生粗骨料替代率混凝土进行了抗压强度试验,分析了再生骨料混凝土破坏形态及不同再生粗骨料替代率对再生混凝土抗压强度的影响,并对其原因进行了分析.试验结果表明28 d龄期的再生骨料混凝土强度能够达到标准要求,用再生骨料配置混凝土是可行的.  相似文献   

14.
再生混凝土的抗压强度研究   总被引:52,自引:4,他引:52  
设计并完成了 2 6 4块再生混凝土立方体试块抗压强度试验 ,系统地研究了再生混凝土的抗压强度与再生粗骨料取代率、水灰比、龄期以及表观密度之间的关系 .通过对比分析 ,得到如下结论 :再生粗骨料的取代率对再生混凝土各龄期抗压强度影响很大 ;再生粗骨料取代率不同 ,再生混凝土抗压强度与水灰比的关系不尽相同 ;再生混凝土的抗压强度的发展规律不同于天然混凝土 ;再生混凝土的抗压强度与其密度之间基本上为线性关系 ;通过调整水灰比可以使再生混凝土获得满足设计要求的抗压强度 .最后结合试验结果给出了各种再生粗骨料取代率时能够达到设计强度为 30MPa的水灰比 .  相似文献   

15.
为提高废旧陶瓷的再生利用率,将陶瓷颗粒与陶瓷粉作为再生混凝土骨料与掺合料进行再生利用.运用正交设计的试验方法,以陶瓷粉、陶瓷颗粒、再生细骨料、粉煤灰、硅灰为5因素,每个因素设置4个水平,共设计16组配合比方案,进行抗压、导热等试验,得到陶瓷再生混凝土的强度、导热系数等物理力学参数,并寻找出最优配合比.试验结果表明最佳配合比为:陶瓷粉的质量分数为10%,陶瓷颗粒的质量分数为20%,再生细骨料的质量分数为40%,粉煤灰的质量分数为15%,硅灰的质量分数为5%.  相似文献   

16.
以两种不同级配的花岗岩石粉作为掺合料(0~0.075 mm和0.075~0.150 mm),分别采用10%,20%,30%的掺量等质量替代水泥,研究花岗岩石粉的级配和掺量对C40混凝土工作性能和抗压强度的影响,基于试验数据确定采用花岗岩石粉替代水泥的最优配合比.结果表明:花岗岩石粉在混凝土中起到填充作用,石粉越细,填充效果越明显.随着混凝土中花岗岩石粉掺入量的增大,混凝土的流动性逐渐降低,抗压强度相对于基准组缓慢上升;当混凝土中掺入的花岗岩石粉级配为0.075~0.150 mm,替代水泥率为20%时,配制出的C40混凝土具有良好的工作性能和强度.  相似文献   

17.
再生混凝土抗压强度及工作性能的影响因素分析   总被引:1,自引:0,他引:1       下载免费PDF全文
用重量比为C20∶C30∶C35∶C40∶C45=1∶4∶3.5∶0.5∶1的混掺废弃混凝土试块制作了再生粗、细骨料,采用正交试验对比分析了水灰比、再生粗骨料取代率、再生细骨料取代率、搅拌工艺4个因素对再生混凝土抗压强度及工作性能的影响规律,并采用极差归纳了其各因素对再生混凝土抗压强度和工作性能的影响.结果表明:掺加100%再生粗骨料和50%的再生细骨料能满足C30强度等级要求及和易性要求,再生粗骨料的取代率对强度影响最明显.  相似文献   

18.
粉煤灰掺量对混凝土变形性能影响的研究   总被引:1,自引:0,他引:1  
针对掺入优质粉煤灰材料对混凝土变形性能和耐久性能的影响,设计了粉煤灰掺入质量分数分别为10%、20%、30%、40%的4种混凝土,利用WHY系列全自动应力试验机,研究了在最大压应力分别为40%fcy和80%fcy(fcy为抗压强度标准值),加载速度为5kN/s,重复5次时的重复压应力作用下,混凝土的轴向变形性能,探讨了掺加粉煤灰对混凝土变形性能的影响.  相似文献   

19.
为研究NaCl环境下混凝土力学性能的退化规律,采用实验室加速腐蚀的试验方法,利用质量分数分别为10%和20%的NaCl溶液对C30混凝土试件进行侵蚀,对腐蚀后混凝土进行了抗拉和抗压力学性能测试。采用强度退化率和应变能损失率为损伤指标,对不同腐蚀程度混凝土力学性能的退化进行分析。结果表明,强度退化率和应变能损失率可以很好地反映混凝土的受腐蚀程度。在腐蚀作用初期,两者略有降低;随着腐蚀时间的延长和腐蚀液质量分数的增加,两者逐渐增加。  相似文献   

20.
通过试验研究再生骨料取代率对C20、C30再生骨料混凝土(RAC)流动性和抗压强度的影响,结果表明:再生骨料混凝土坍落度随再生骨料取代率增大而减小;当再生骨料取代率为20%、40%、60%、80%和100%时,再生骨料混凝土抗压强度较普通混凝土均明显降低,最大降幅分别达27.5%、28.4%;取代率为50%时再生骨料混凝土抗压强度较普通混凝土分别高出7.2%、6.1%。SEM图像显示旧浆体区内存在较多微裂纹,而新浆体区结构更致密。再生骨料取代率及界面过渡区微观结构是影响再生骨料混凝土抗压强度的主要因素。提高再生骨料品质、优化再生骨料级配、改善界面过渡区微观结构是提高再生骨料混凝土抗压强度的根本途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号