首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The roots of most higher plants form arbuscular mycorrhiza, an ancient, phosphate-acquiring symbiosis with fungi, whereas only four related plant orders are able to engage in the evolutionary younger nitrogen-fixing root-nodule symbiosis with bacteria. Plant symbioses with bacteria and fungi require a set of common signal transduction components that redirect root cell development. Here we present two highly homologous genes from Lotus japonicus, CASTOR and POLLUX, that are indispensable for microbial admission into plant cells and act upstream of intracellular calcium spiking, one of the earliest plant responses to symbiotic stimulation. Surprisingly, both twin proteins are localized in the plastids of root cells, indicating a previously unrecognized role of this ancient endosymbiont in controlling intracellular symbioses that evolved more recently.  相似文献   

2.
Membrane protein oligomeric structure and transport function   总被引:16,自引:0,他引:16  
M Klingenberg 《Nature》1981,290(5806):449-454
Proteins which traverse membranes tend to have a dimeric structure in which the dimer is arranged asymmetrically across the membrane with the axis of symmetry perpendicular to the membrane plane. This general structure is well suited to the function of transporting nutrients across the cell membrane.  相似文献   

3.
The accessible surface area and stability of oligomeric proteins   总被引:6,自引:0,他引:6  
S Miller  A M Lesk  J Janin  C Chothia 《Nature》1987,328(6133):834-836
Protein structures are stabilized by hydrophobic and van der Waals forces, and by hydrogen bonds. The relation between these thermodynamic quantities and the actual three-dimensional structure of proteins can not be calculated precisely. However, certain empirical relations have been discovered. Hydrophobic energy is gained by the reduction of surface in contact with water. For monomeric proteins, the area of the surface accessible to solvent, and of that buried in the interior, is a simple function of molecular weight. Proteins with different shapes and secondary structures, but of the same molecular weight, have the same accessible surface area. It has been argued that there is no similar relationship for large oligomeric proteins. In this paper we show that the surface areas of oligomeric proteins, and the areas of the surface buried within them, are directly related to relative molecular mass. Although oligomers of the same molecular weight bury the same amounts of surface, the proportions buried within and between subunits vary. This has important implications for the role of subunit interfaces in the stability and activity of oligomeric proteins.  相似文献   

4.
Xing W  Zou Y  Liu Q  Liu J  Luo X  Huang Q  Chen S  Zhu L  Bi R  Hao Q  Wu JW  Zhou JM  Chai J 《Nature》2007,449(7159):243-247
Pathogenic microbes use effectors to enhance susceptibility in host plants. However, plants have evolved a sophisticated immune system to detect these effectors using cognate disease resistance proteins, a recognition that is highly specific, often elicits rapid and localized cell death, known as a hypersensitive response, and thus potentially limits pathogen growth. Despite numerous genetic and biochemical studies on the interactions between pathogen effector proteins and plant resistance proteins, the structural bases for such interactions remain elusive. The direct interaction between the tomato protein kinase Pto and the Pseudomonas syringae effector protein AvrPto is known to trigger disease resistance and programmed cell death through the nucleotide-binding site/leucine-rich repeat (NBS-LRR) class of disease resistance protein Prf. Here we present the crystal structure of an AvrPto-Pto complex. Contrary to the widely held hypothesis that AvrPto activates Pto kinase activity, our structural and biochemical analyses demonstrated that AvrPto is an inhibitor of Pto kinase in vitro. The AvrPto-Pto interaction is mediated by the phosphorylation-stabilized P+1 loop and a second loop in Pto, both of which negatively regulate the Prf-mediated defences in the absence of AvrPto in tomato plants. Together, our results show that AvrPto derepresses host defences by interacting with the two defence-inhibition loops of Pto.  相似文献   

5.
A nuclear encoded mitochondrial heat-shock protein hsp60 is required for the assembly into oligomeric complexes of proteins imported into the mitochondrial matrix. hsp60 is a member of the 'chaperonin' class of protein factors, which include the Escherichia coli groEL protein and the Rubisco subunit-binding protein of chloroplasts.  相似文献   

6.
X-ray analysis of beta B2-crystallin and evolution of oligomeric lens proteins   总被引:13,自引:0,他引:13  
The beta, gamma-crystallins form a class of homologous proteins in the eye lens. Each gamma-crystallin comprises four topologically equivalent, Greek key motifs; pairs of motifs are organized around a local dyad to give domains and two similar domains are in turn related by a further local dyad. Sequence comparisons and model building predicted that hetero-oligomeric beta-crystallins also had internally quadruplicated subunits, but with extensions at the N and C termini, indicating that beta, gamma-crystallins evolved in two duplication steps from an ancestral protein folded as a Greek key. We report here the X-ray analysis at 2.1 A resolution of beta B2-crystallin homodimer which shows that the connecting peptide is extended and the two domains separated in a way quite unlike gamma-crystallin. Domain interactions analogous to those within monomeric gamma-crystallin are intermolecular and related by a crystallographic dyad in the beta B2-crystallin dimer. This shows how oligomers can evolve by conserving an interface rather than connectivity. A further interaction between dimers suggests a model for more complex aggregates of beta-crystallin in the lens.  相似文献   

7.
The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found on any plant root or plant debris in the tested soils. By contrast, colonization of Arabidopsis roots by members of the Actinobacteria depends on other cues from metabolically active host cells.  相似文献   

8.
Microsporidia are highly specialized obligate intracellular parasites of other eukaryotes (including humans) that show extreme reduction at the molecular, cellular and biochemical level. Although microsporidia have long been considered as early branching eukaryotes that lack mitochondria, they have recently been shown to contain a tiny mitochondrial remnant called a mitosome. The function of the mitosome is unknown, because microsporidians lack the genes for canonical mitochondrial functions, such as aerobic respiration and haem biosynthesis. However, microsporidial genomes encode several components of the mitochondrial iron-sulphur (Fe-S) cluster assembly machinery. Here we provide experimental insights into the metabolic function and localization of these proteins. We cloned, functionally characterized and localized homologues of several central mitochondrial Fe-S cluster assembly components for the microsporidians Encephalitozoon cuniculi and Trachipleistophora hominis. Several microsporidial proteins can functionally replace their yeast counterparts in Fe-S protein biogenesis. In E. cuniculi, the iron (frataxin) and sulphur (cysteine desulphurase, Nfs1) donors and the scaffold protein (Isu1) co-localize with mitochondrial Hsp70 to the mitosome, consistent with it being the functional site for Fe-S cluster biosynthesis. In T. hominis, mitochondrial Hsp70 and the essential sulphur donor (Nfs1) are still in the mitosome, but surprisingly the main pools of Isu1 and frataxin are cytosolic, creating a conundrum of how these key components of Fe-S cluster biosynthesis coordinate their function. Together, our studies identify the essential biosynthetic process of Fe-S protein assembly as a key function of microsporidian mitosomes.  相似文献   

9.
Rosebrock TR  Zeng L  Brady JJ  Abramovitch RB  Xiao F  Martin GB 《Nature》2007,448(7151):370-374
Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB(1-387)) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB(1-387 )and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB(1-387 )and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.  相似文献   

10.
Mammalian and bacterial sugar transport proteins are homologous   总被引:14,自引:0,他引:14  
The uptake of a sugar across the boundary membrane is a primary event in the nutrition of most cells, but the hydrophobic nature of the transport proteins involved makes them difficult to characterize. Their amino-acid sequences can, however, be determined by cloning and sequencing the corresponding gene (or complementary DNA). We have determined the sequences of the arabinose-H+ and xylose-H+ membrane transport proteins of Escherichia coli. They are homologous with each other and, unexpectedly, with the glucose transporters of human hepatoma and rat brain cells. All four proteins share similarities with the E. coli citrate transporter. Comparisons of their sequences and hydropathic profiles yield insights into their structure, functionally important residues and possible evolutionary relationships. There is little apparent homology with the lactose-H+ (LacY) or melibiose-Na+ (MelB) transport proteins of E. coli.  相似文献   

11.
Low HH  Löwe J 《Nature》2006,444(7120):766-769
Dynamins form a superfamily of large mechano-chemical GTPases that includes the classical dynamins and dynamin-like proteins (DLPs). They are found throughout the Eukarya, functioning in core cellular processes such as endocytosis and organelle division. Many bacteria are predicted by sequence to possess large GTPases with the same multidomain architecture that is found in DLPs. Mechanistic dissection of dynamin family members has been impeded by a lack of high-resolution structural data currently restricted to the GTPase and pleckstrin homology domains, and the dynamin-related human guanylate-binding protein. Here we present the crystal structure of a cyanobacterial DLP in both nucleotide-free and GDP-associated conformation. The bacterial DLP shows dynamin-like qualities, such as helical self-assembly and tubulation of a lipid bilayer. In vivo, it localizes to the membrane in a manner reminiscent of FZL, a chloroplast-specific dynamin-related protein with which it shares sequence similarity. Our results provide structural and mechanistic insight that may be relevant across the dynamin superfamily. Concurrently, we show compelling similarity between a cyanobacterial and chloroplast DLP that, given the endosymbiotic ancestry of chloroplasts, questions the evolutionary origins of dynamins.  相似文献   

12.
Loppin B  Bonnefoy E  Anselme C  Laurençon A  Karr TL  Couble P 《Nature》2005,437(7063):1386-1390
In sexually reproducing animals, a crucial step in zygote formation is the decondensation of the fertilizing sperm nucleus into a DNA replication-competent male pronucleus. Genome-wide nucleosome assembly on paternal DNA implies the replacement of sperm chromosomal proteins, such as protamines, by maternally provided histones. This fundamental process is specifically impaired in sésame (ssm), a unique Drosophila maternal effect mutant that prevents male pronucleus formation. Here we show that ssm is a point mutation in the Hira gene, thus demonstrating that the histone chaperone protein HIRA is required for nucleosome assembly during sperm nucleus decondensation. In vertebrates, HIRA has recently been shown to be critical for a nucleosome assembly pathway independent of DNA synthesis that specifically involves the H3.3 histone variant. We also show that nucleosomes containing H3.3, and not H3, are specifically assembled in paternal Drosophila chromatin before the first round of DNA replication. The exclusive marking of paternal chromosomes with H3.3 represents a primary epigenetic distinction between parental genomes in the zygote, and underlines an important consequence of the critical and highly specialized function of HIRA at fertilization.  相似文献   

13.
Crystal structure of chaperone protein PapD reveals an immunoglobulin fold   总被引:45,自引:0,他引:45  
A Holmgren  C I Br?nden 《Nature》1989,342(6247):248-251
The chaperone protein PapD mediates assembly of pili in Escherichia coli. Its polypeptide chain folds into two immunoglobulin-type domains that are homologous in sequence to the human lymphocyte differentiation antigen Leu-1/CD5.  相似文献   

14.
Cells are organized on length scales ranging from ?ngstr?m to micrometres. However, the mechanisms by which ?ngstr?m-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.  相似文献   

15.
C E Stebbins  J E Galán 《Nature》2001,414(6859):77-81
Many bacterial pathogens use a type III protein secretion system to deliver virulence effector proteins directly into the host cell cytosol, where they modulate cellular processes. A requirement for the effective translocation of several such effector proteins is the binding of specific cytosolic chaperones, which typically interact with discrete domains in the virulence factors. We report here the crystal structure at 1.9 A resolution of the chaperone-binding domain of the Salmonella effector protein SptP with its cognate chaperone SicP. The structure reveals that this domain is maintained in an extended, unfolded conformation that is wound around three successive chaperone molecules. Short segments from two different SptP molecules are juxtaposed by the chaperones, where they dimerize across a hydrophobic interface. These results imply that the chaperones associated with the type III secretion system maintain their substrates in a secretion-competent state that is capable of engaging the secretion machinery to travel through the type III apparatus in an unfolded or partially folded manner.  相似文献   

16.
细菌群体感应机制与动植物病原菌的致病力   总被引:2,自引:0,他引:2  
N 酰基高丝氨酸内酯 (AHLs)作为信号分子介导的细菌群体感应机制参与许多生物学功能的调节 ,当侵染动植物寄主组织的病原菌繁殖到一定量时 ,细菌本身产生的AHLs积累到临界浓度 ,AHLs与胞内特异受体结合 ,启动致病因子的表达。利用AHLs降解酶和AHLs类似物的特性 ,干扰和破坏病原菌的AHLs 群体感应机制 ,将为利用现代生物技术防治此类细菌病害开辟了一条全新的途径  相似文献   

17.
During translation, the first encounter of nascent polypeptides is with the ribosome-associated chaperones that assist the folding process--a principle that seems to be conserved in evolution. In Escherichia coli, the ribosome-bound Trigger Factor chaperones the folding of cytosolic proteins by interacting with nascent polypeptides. Here we identify a ribosome-binding motif in the amino-terminal domain of Trigger Factor. We also show the formation of crosslinked products between Trigger Factor and two adjacent ribosomal proteins, L23 and L29, which are located at the exit of the peptide tunnel in the ribosome. L23 is essential for the growth of E. coli and the association of Trigger Factor with the ribosome, whereas L29 is dispensable in both processes. Mutation of an exposed glutamate in L23 prevents Trigger Factor from interacting with ribosomes and nascent chains, and causes protein aggregation and conditional lethality in cells that lack the protein repair function of the DnaK chaperone. Purified L23 also interacts specifically with Trigger Factor in vitro. We conclude that essential L23 provides a chaperone docking site on ribosomes that directly links protein biosynthesis with chaperone-assisted protein folding.  相似文献   

18.
A plant receptor-like kinase required for both bacterial and fungal symbiosis   总被引:63,自引:0,他引:63  
Most higher plant species can enter a root symbiosis with arbuscular mycorrhizal fungi, in which plant carbon is traded for fungal phosphate. This is an ancient symbiosis, which has been detected in fossils of early land plants. In contrast, the nitrogen-fixing root nodule symbioses of plants with bacteria evolved more recently, and are phylogenetically restricted to the rosid I clade of plants. Both symbioses rely on partially overlapping genetic programmes. We have identified the molecular basis for this convergence by cloning orthologous SYMRK ('symbiosis receptor-like kinase') genes from Lotus and pea, which are required for both fungal and bacterial recognition. SYMRK is predicted to have a signal peptide, an extracellular domain comprising leucine-rich repeats, a transmembrane and an intracellular protein kinase domain. Lotus SYMRK is required for a symbiotic signal transduction pathway leading from the perception of microbial signal molecules to rapid symbiosis-related gene activation. The perception of symbiotic fungi and bacteria is mediated by at least one common signalling component, which could have been recruited during the evolution of root nodule symbioses from the already existing arbuscular mycorrhiza symbiosis.  相似文献   

19.
The fidelity and specificity of information flow within a cell is controlled by scaffolding proteins that assemble and link enzymes into signalling circuits. These circuits can be inhibited by bacterial effector proteins that post-translationally modify individual pathway components. However, there is emerging evidence that pathogens directly organize higher-order signalling networks through enzyme scaffolding, and the identity of the effectors and their mechanisms of action are poorly understood. Here we identify the enterohaemorrhagic Escherichia coli O157:H7 type III effector EspG as a regulator of endomembrane trafficking using a functional screen, and report ADP-ribosylation factor (ARF) GTPases and p21-activated kinases (PAKs) as its relevant host substrates. The 2.5?? crystal structure of EspG in complex with ARF6 shows how EspG blocks GTPase-activating-protein-assisted GTP hydrolysis, revealing a potent mechanism of GTPase signalling inhibition at organelle membranes. In addition, the 2.8?? crystal structure of EspG in complex with the autoinhibitory Iα3-helix of PAK2 defines a previously unknown catalytic site in EspG and provides an allosteric mechanism of kinase activation by a bacterial effector. Unexpectedly, ARF and PAKs are organized on adjacent surfaces of EspG, indicating its role as a 'catalytic scaffold' that effectively reprograms cellular events through the functional assembly of GTPase-kinase signalling complex.  相似文献   

20.
All living cells require specific mechanisms that target proteins to the cell surface. In eukaryotes, the first part of this process involves recognition in the endoplasmic reticulum of amino-terminal signal sequences and translocation through Sec translocons, whereas subsequent targeting to different surface locations is promoted by internal sorting signals. In bacteria, N-terminal signal sequences promote translocation across the cytoplasmic membrane, which surrounds the entire cell, but some proteins are nevertheless secreted in one part of the cell by poorly understood mechanisms. Here we analyse localized secretion in the Gram-positive pathogen Streptococcus pyogenes, and show that the signal sequences of two surface proteins, M protein and protein F (PrtF), direct secretion to different subcellular regions. The signal sequence of M protein promotes secretion at the division septum, whereas that of PrtF preferentially promotes secretion at the old pole. Our work therefore shows that a signal sequence may contain information that directs the secretion of a protein to one subcellular region, in addition to its classical role in promoting secretion. This finding identifies a new level of complexity in protein translocation and emphasizes the potential of bacterial systems for the analysis of fundamental cell-biological problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号